↓ Skip to main content

Co-expression network analysis of the transcriptomes of rice roots exposed to various cadmium stresses reveals universal cadmium-responsive genes

Overview of attention for article published in BMC Plant Biology, November 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
92 Dimensions

Readers on

mendeley
86 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Co-expression network analysis of the transcriptomes of rice roots exposed to various cadmium stresses reveals universal cadmium-responsive genes
Published in
BMC Plant Biology, November 2017
DOI 10.1186/s12870-017-1143-y
Pubmed ID
Authors

Mingpu Tan, Dan Cheng, Yuening Yang, Guoqiang Zhang, Mengjie Qin, Jun Chen, Yahua Chen, Mingyi Jiang

Abstract

The migration of cadmium (Cd) from contaminated soil to rice is a cause for concern. However, the molecular mechanism underlying the response of rice roots to various Cd stresses remains to be clarified from the viewpoint of the co-expression network at a system-wide scale. We employed a comparative RNAseq-based approach to identify early Cd-responsive differentially expressed genes (DEGs) in rice 'Nipponbare' seedling roots after 1 h of high-Cd treatment. A multiplicity of the identified 1772 DEGs were implicated in hormone signaling and transcriptional regulation, particularly NACs and WRKYs were all upregulated under Cd stress. All of the 6 Cd-upregulated ABC transporters were pleiotropic drug resistance proteins (PDRs), whereas all of the 6 ZRT/IRT-like proteins (ZIPs) were consistently downregulated by Cd treatment. To further confirm our results of this early transcriptomic response to Cd exposure, we then conducted weighted gene co-expression network analysis (WGCNA) to re-analyze our RNAseq data in combination with other 11 previously published RNAseq datasets for rice roots exposed to diverse concentrations of Cd for extended treatment periods. This integrative approach identified 271 transcripts as universal Cd-regulated DEGs that are key components of the Cd treatment coupled co-expression module. A global view of the 164 transcripts with annotated functions in pathway networks revealed several Cd-upregulated key functional genes, including transporter ABCG36/OsPDR9, 12-oxo-phytodienoic acid reductases (OPRs) for JA synthesis, and ZIM domain proteins JAZs in JA signaling, as well as OsWRKY10, NAC, and ZFP transcription factors. More importantly, 104 of these, including ABCG36/OsPDR9, OsNAC3, as well as several orthologs in group metalloendoproteinase, plastocyanin-like domain containing proteins and pectin methylesterase inhibitor, may respond specifically to various Cd pressures, after subtracting the 60 general stress-responsive genes reported to be commonly upregulated following multiple stresses. An integrative approach was implemented to identify DEGs and co-expression network modules in response to various Cd pressures, and 104 of the 164 annotatable universal Cd-responsive DEGs may specifically respond to various Cd pressures. These results provide insight into the universal molecular mechanisms beneath the Cd response in rice roots, and suggest many promising targets for improving the rice acclimation process against Cd toxicity.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 86 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 86 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 14 16%
Student > Ph. D. Student 12 14%
Researcher 8 9%
Other 7 8%
Student > Bachelor 6 7%
Other 14 16%
Unknown 25 29%
Readers by discipline Count As %
Agricultural and Biological Sciences 36 42%
Biochemistry, Genetics and Molecular Biology 10 12%
Environmental Science 3 3%
Computer Science 2 2%
Engineering 2 2%
Other 4 5%
Unknown 29 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 November 2017.
All research outputs
#20,451,991
of 23,007,887 outputs
Outputs from BMC Plant Biology
#2,548
of 3,283 outputs
Outputs of similar age
#288,851
of 331,365 outputs
Outputs of similar age from BMC Plant Biology
#59
of 73 outputs
Altmetric has tracked 23,007,887 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,283 research outputs from this source. They receive a mean Attention Score of 3.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 331,365 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 73 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.