↓ Skip to main content

A murine model for developmental dysplasia of the hip: ablation of CX3CR1 affects acetabular morphology and gait

Overview of attention for article published in Journal of Translational Medicine, November 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
44 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A murine model for developmental dysplasia of the hip: ablation of CX3CR1 affects acetabular morphology and gait
Published in
Journal of Translational Medicine, November 2017
DOI 10.1186/s12967-017-1335-0
Pubmed ID
Authors

George Feldman, Arlene Offemaria, Hind Sawan, Javad Parvizi, Theresa A. Freeman

Abstract

Developmental dysplasia of the hip (DDH) is a debilitating condition whose distinguishing signs include incomplete formation of the acetabulum leading to dislocation of the femur, accelerated wear of the articular cartilage and joint laxity resulting in osteoarthritis. It is a complex disorder having environmental and genetic causes. Existing techniques fail to detect milder forms of DDH in newborns leading to hip osteoarthritis in young adults. A sensitive, specific and cost effective test would allow identification of newborns that could be non-invasively corrected by the use of a Pavlik harness. Previously, we identified a 2.5 MB candidate region on human chromosome 3 by using linkage analysis of a 4 generation, 72 member family. Whole exome sequencing of the DNA of 4 severely affected members revealed a single nucleotide polymorphism variant, rs3732378 co-inherited by all 11 affected family members. This variant causes a threonine to methionine amino acid change in the coding sequence of the CX3CR1 chemokine receptor and is predicted to be harmful to the function of the protein To gain further insight into the function of this mutation we examined the effect of CX3CR1 ablation on the architecture of the mouse acetabulum and on the murine gait. The hips of 5 and 8 weeks old wild type and CX3CR1 KO mice were analyzed using micro-CT to measure acetabular diameter and ten additional dimensional parameters. Eight week old mice were gait tested using an inclined treadmill with and without load and then underwent micro-CT analysis. (1) KO mice showed larger a 5-17% larger diameter left acetabula than WT mice at both ages. (2) At 8 weeks the normalized area of space (i.e. size discrepancy) between the femur head and acetabulum is significantly larger [38% (p = 0.001)-21% (p = 0.037)] in the KO mice. (3) At 8 weeks gait analysis of these same mice shows several metrics that are consistent with impairment in the KO but not the WT mice. These deficits are often seen in mice and humans who develop hip OA. The effect of CX3CR1 deletion on murine acetabular development provides suggestive evidence of a susceptibility inducing role of the CX3CR1 gene on DDH.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 44 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 44 100%

Demographic breakdown

Readers by professional status Count As %
Other 9 20%
Student > Master 5 11%
Student > Doctoral Student 3 7%
Student > Postgraduate 3 7%
Professor > Associate Professor 3 7%
Other 6 14%
Unknown 15 34%
Readers by discipline Count As %
Medicine and Dentistry 10 23%
Veterinary Science and Veterinary Medicine 5 11%
Engineering 4 9%
Biochemistry, Genetics and Molecular Biology 2 5%
Nursing and Health Professions 1 2%
Other 2 5%
Unknown 20 45%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 November 2017.
All research outputs
#20,451,991
of 23,007,887 outputs
Outputs from Journal of Translational Medicine
#3,338
of 4,023 outputs
Outputs of similar age
#286,068
of 328,166 outputs
Outputs of similar age from Journal of Translational Medicine
#62
of 65 outputs
Altmetric has tracked 23,007,887 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,023 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.6. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 328,166 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 65 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.