↓ Skip to main content

Genetic variation in populations of the earthworm, Lumbricus rubellus, across contaminated mine sites

Overview of attention for article published in BMC Genomic Data, November 2017
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (74th percentile)
  • High Attention Score compared to outputs of the same age and source (85th percentile)

Mentioned by

twitter
10 X users

Citations

dimensions_citation
33 Dimensions

Readers on

mendeley
47 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genetic variation in populations of the earthworm, Lumbricus rubellus, across contaminated mine sites
Published in
BMC Genomic Data, November 2017
DOI 10.1186/s12863-017-0557-8
Pubmed ID
Authors

Craig Anderson, Luis Cunha, Pierfrancesco Sechi, Peter Kille, David Spurgeon

Abstract

Populations of the earthworm, Lumbricus rubellus, are commonly found across highly contaminated former mine sites and are considered to have under-gone selection for mitigating metal toxicity. Comparison of adapted populations with those found on less contaminated soils can provide insights into ecological processes that demonstrate the long-term effects of soil contamination. Contemporary sequencing methods allow for portrayal of demographic inferences and highlight genetic variation indicative of selection at specific genes. Furthermore, the occurrence of L. rubellus lineages across the UK allows for inferences of mechanisms associated with drivers of speciation and local adaptation. Using RADseq, we were able to define population structure between the two lineages through the use of draft genomes for each, demonstrating an absence of admixture between lineages and that populations over extensive geographic distances form discrete populations. Between the two British lineages, we were able to provide evidence for selection near to genes associated with epigenetic and morphological functions, as well as near a gene encoding a pheromone. Earthworms inhabiting highly contaminated soils bare close genomic resemblance to those from proximal control soils. We were able to define a number of SNPs that largely segregate populations and are indicative of genes that are likely under selection for managing metal toxicity. This includes calcium and phosphate-handling mechanisms linked to lead and arsenic contaminants, respectively, while we also observed evidence for glutathione-related mechanisms, including metallothionein, across multiple populations. Population genomic end points demonstrate no consistent reduction in nucleotide diversity, or increase in inbreeding coefficient, relative to history of exposure. Though we can clearly define lineage membership using genomic markers, as well as population structure between geographic localities, it is difficult to resolve markers that segregate entirely between populations in response to soil metal concentrations. This may represent a highly variable series of traits in response to the heterogenous nature of the soil environment, but ultimately demonstrates the maintenance of lineage-specific genetic variation among local populations. L. rubellus appears to provide an exemplary system for exploring drivers for speciation, with a continuum of lineages coexisting across continental Europe, while distinct lineages exist in isolation throughout the UK.

X Demographics

X Demographics

The data shown below were collected from the profiles of 10 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 47 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 47 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 10 21%
Student > Bachelor 9 19%
Researcher 8 17%
Student > Postgraduate 4 9%
Student > Master 3 6%
Other 5 11%
Unknown 8 17%
Readers by discipline Count As %
Agricultural and Biological Sciences 13 28%
Biochemistry, Genetics and Molecular Biology 13 28%
Environmental Science 3 6%
Medicine and Dentistry 3 6%
Unspecified 2 4%
Other 1 2%
Unknown 12 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 6. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 January 2018.
All research outputs
#6,453,009
of 25,405,598 outputs
Outputs from BMC Genomic Data
#206
of 1,204 outputs
Outputs of similar age
#112,138
of 439,017 outputs
Outputs of similar age from BMC Genomic Data
#5
of 28 outputs
Altmetric has tracked 25,405,598 research outputs across all sources so far. This one has received more attention than most of these and is in the 74th percentile.
So far Altmetric has tracked 1,204 research outputs from this source. They receive a mean Attention Score of 4.3. This one has done well, scoring higher than 82% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 439,017 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 74% of its contemporaries.
We're also able to compare this research output to 28 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 85% of its contemporaries.