↓ Skip to main content

Balancing the playing field: collaborative gaming for physical training

Overview of attention for article published in Journal of NeuroEngineering and Rehabilitation, November 2017
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • Among the highest-scoring outputs from this source (#11 of 1,291)
  • High Attention Score compared to outputs of the same age (98th percentile)
  • High Attention Score compared to outputs of the same age and source (96th percentile)

Mentioned by

news
15 news outlets
twitter
3 X users
googleplus
1 Google+ user
video
1 YouTube creator

Citations

dimensions_citation
50 Dimensions

Readers on

mendeley
200 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Balancing the playing field: collaborative gaming for physical training
Published in
Journal of NeuroEngineering and Rehabilitation, November 2017
DOI 10.1186/s12984-017-0319-x
Pubmed ID
Authors

Michael Mace, Nawal Kinany, Paul Rinne, Anthony Rayner, Paul Bentley, Etienne Burdet

Abstract

Multiplayer video games promoting exercise-based rehabilitation may facilitate motor learning, by increasing motivation through social interaction. However, a major design challenge is to enable meaningful inter-subject interaction, whilst allowing for significant skill differences between players. We present a novel motor-training paradigm that allows real-time collaboration and performance enhancement, across a wide range of inter-subject skill mismatches, including disabled vs. able-bodied partnerships. A virtual task consisting of a dynamic ball on a beam, is controlled at each end using independent digital force-sensing handgrips. Interaction is mediated through simulated physical coupling and locally-redundant control. Game performance was measured in 16 healthy-healthy and 16 patient-expert dyads, where patients were hemiparetic stroke survivors using their impaired arm. Dual-player was compared to single-player performance, in terms of score, target tracking, stability, effort and smoothness; and questionnaires probing user-experience and engagement. Performance of less-able subjects (as ranked from single-player ability) was enhanced by dual-player mode, by an amount proportionate to the partnership's mismatch. The more abled partners' performances decreased by a similar amount. Such zero-sum interactions were observed for both healthy-healthy and patient-expert interactions. Dual-player was preferred by the majority of players independent of baseline ability and subject group; healthy subjects also felt more challenged, and patients more skilled. This is the first demonstration of implicit skill balancing in a truly collaborative virtual training task leading to heightened engagement, across both healthy subjects and stroke patients.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 200 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 200 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 33 17%
Student > Bachelor 31 16%
Student > Ph. D. Student 27 14%
Researcher 21 11%
Student > Doctoral Student 9 5%
Other 19 10%
Unknown 60 30%
Readers by discipline Count As %
Engineering 43 22%
Nursing and Health Professions 22 11%
Medicine and Dentistry 18 9%
Computer Science 14 7%
Sports and Recreations 9 5%
Other 31 16%
Unknown 63 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 118. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 November 2017.
All research outputs
#301,679
of 23,008,860 outputs
Outputs from Journal of NeuroEngineering and Rehabilitation
#11
of 1,291 outputs
Outputs of similar age
#7,469
of 437,479 outputs
Outputs of similar age from Journal of NeuroEngineering and Rehabilitation
#1
of 33 outputs
Altmetric has tracked 23,008,860 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 98th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,291 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.9. This one has done particularly well, scoring higher than 99% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 437,479 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 98% of its contemporaries.
We're also able to compare this research output to 33 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 96% of its contemporaries.