↓ Skip to main content

Calretinin-positive L5a pyramidal neurons in the development of the paralemniscal pathway in the barrel cortex

Overview of attention for article published in Molecular Brain, November 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
11 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Calretinin-positive L5a pyramidal neurons in the development of the paralemniscal pathway in the barrel cortex
Published in
Molecular Brain, November 2014
DOI 10.1186/s13041-014-0084-8
Pubmed ID
Authors

Junhua Liu, Bin Liu, XiaoYun Zhang, Baocong Yu, Wuqiang Guan, Kun Wang, Yang Yang, Yifan Gong, Xiaojing Wu, Yuchio Yanagawa, Shengxi Wu, Chunjie Zhao

Abstract

BackgroundThe rodent barrel cortex has been established as an ideal model for studying the development and plasticity of a neuronal circuit. The barrel cortex consists of barrel and septa columns, which receive various input signals through distinct pathways. The lemniscal pathway transmits whisker-specific signals to homologous barrel columns, and the paralemniscal pathway transmits multi-whisker signals to both barrel and septa columns. The integration of information from both lemniscal and paralemniscal pathways in the barrel cortex is critical for precise object recognition. As the main target of the posterior medial nucleus (POm) in the paralemniscal pathway, layer 5a (L5a) pyramidal neurons are involved in both barrel and septa circuits and are considered an important site of information integration. However, information on L5a neurons is very limited. This study aims to explore the cellular features of L5a neurons and to provide a morphological basis for studying their roles in the development of the paralemniscal pathway and in information integration.Results1. We found that the calcium-binding protein calretinin (CR) is dynamically expressed in L5a excitatory pyramidal neurons of the barrel cortex, and L5a neurons form a unique serrated pattern similar to the distributions of their presynaptic POm axon terminals.2. Infraorbital nerve transection disrupts this unique alignment, indicating that it is input dependent.3. The formation of the L5a neuronal alignment develops synchronously with barrels, which suggests that the lemniscal and paralemniscal pathways may interact with each other to regulate pattern formation and refinement in the barrel cortex.4. CR is specifically expressed in the paralemniscal pathway, and CR deletion disrupts the unique L5a neuronal pattern, which indicates that CR may be required for the development of the paralemniscal pathway.ConclusionsOur results demonstrate that L5a neurons form a unique, input-dependent serrated alignment during the development of cortical barrels and that CR may play an important role in the development of the paralemniscal pathway. Our data provide a morphological basis for studying the role of L5a pyramidal neurons in information integration within the lemniscal and paralemniscal pathways.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 11 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 11 100%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 1 9%
Professor 1 9%
Student > Ph. D. Student 1 9%
Student > Master 1 9%
Researcher 1 9%
Other 0 0%
Unknown 6 55%
Readers by discipline Count As %
Neuroscience 4 36%
Agricultural and Biological Sciences 1 9%
Unknown 6 55%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 November 2015.
All research outputs
#14,204,846
of 22,771,140 outputs
Outputs from Molecular Brain
#548
of 1,106 outputs
Outputs of similar age
#191,903
of 362,502 outputs
Outputs of similar age from Molecular Brain
#11
of 25 outputs
Altmetric has tracked 22,771,140 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,106 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.1. This one is in the 44th percentile – i.e., 44% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 362,502 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 25 others from the same source and published within six weeks on either side of this one. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.