↓ Skip to main content

Cytokine and autoantibody clusters interaction in systemic lupus erythematosus

Overview of attention for article published in Journal of Translational Medicine, November 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (64th percentile)

Mentioned by

twitter
3 X users
facebook
1 Facebook page

Citations

dimensions_citation
54 Dimensions

Readers on

mendeley
78 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Cytokine and autoantibody clusters interaction in systemic lupus erythematosus
Published in
Journal of Translational Medicine, November 2017
DOI 10.1186/s12967-017-1345-y
Pubmed ID
Authors

Yovana Pacheco, Julián Barahona-Correa, Diana M. Monsalve, Yeny Acosta-Ampudia, Manuel Rojas, Yhojan Rodríguez, Juliana Saavedra, Mónica Rodríguez-Jiménez, Rubén D. Mantilla, Carolina Ramírez-Santana, Nicolás Molano-González, Juan-Manuel Anaya

Abstract

Evidence supports the existence of different subphenotypes in systemic lupus erythematosus (SLE) and the pivotal role of cytokines and autoantibodies, which interact in a highly complex network. Thus, understanding how these complex nonlinear processes are connected and observed in real-life settings is a major challenge. Cluster approaches may assist in the identification of these subphenotypes, which represent such a phenomenon, and may contribute to the development of personalized medicine. Therefore, the relationship between autoantibody and cytokine clusters in SLE was analyzed. This was an exploratory study in which 67 consecutive women with established SLE were assessed. Clinical characteristics including disease activity, a 14-autoantibody profile, and a panel of 15 serum cytokines were measured simultaneously. Mixed-cluster methodology and bivariate analyses were used to define autoantibody and cytokine clusters and to identify associations between them and related variables. First, three clusters of autoantibodies were defined: (1) neutral, (2) antiphospholipid antibodies (APLA)-dominant, and (3) anti-dsDNA/ENA-dominant. Second, eight cytokines showed levels above the threshold thus making possible to find 4 clusters: (1) neutral, (2) chemotactic, (3) G-CSF dominant, and (4) IFNα/Pro-inflammatory. Furthermore, the disease activity was associated with cytokine clusters, which, in turn, were associated with autoantibody clusters. Finally, when all biomarkers were included, three clusters were found: (1) neutral, (2) chemotactic/APLA, and (3) IFN/dsDNA, which were also associated with disease activity. These results support the existence of three SLE cytokine-autoantibody driven subphenotypes. They encourage the practice of personalized medicine, and support proof-of-concept studies.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 78 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 78 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 19 24%
Student > Bachelor 11 14%
Student > Ph. D. Student 10 13%
Other 4 5%
Student > Master 4 5%
Other 15 19%
Unknown 15 19%
Readers by discipline Count As %
Medicine and Dentistry 23 29%
Immunology and Microbiology 12 15%
Biochemistry, Genetics and Molecular Biology 7 9%
Agricultural and Biological Sciences 5 6%
Neuroscience 2 3%
Other 6 8%
Unknown 23 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 September 2018.
All research outputs
#13,882,258
of 23,008,860 outputs
Outputs from Journal of Translational Medicine
#1,694
of 4,023 outputs
Outputs of similar age
#223,296
of 438,185 outputs
Outputs of similar age from Journal of Translational Medicine
#22
of 65 outputs
Altmetric has tracked 23,008,860 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,023 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.6. This one has gotten more attention than average, scoring higher than 57% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 438,185 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 65 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 64% of its contemporaries.