↓ Skip to main content

Learning to improve medical decision making from imbalanced data without a priori cost

Overview of attention for article published in BMC Medical Informatics and Decision Making, December 2014
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 X users

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
44 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Learning to improve medical decision making from imbalanced data without a priori cost
Published in
BMC Medical Informatics and Decision Making, December 2014
DOI 10.1186/s12911-014-0111-9
Pubmed ID
Authors

Xiang Wan, Jiming Liu, William K Cheung, Tiejun Tong

Abstract

BackgroundIn a medical data set, data are commonly composed of a minority (positive or abnormal) group and a majority (negative or normal) group and the cost of misclassifying a minority sample as a majority sample is highly expensive. This is the so-called imbalanced classification problem. The traditional classification functions can be seriously affected by the skewed class distribution in the data. To deal with this problem, people often use a priori cost to adjust the learning process in the pursuit of optimal classification function. However, this priori cost is often unknown and hard to estimate in medical decision making.MethodsIn this paper, we propose a new learning method, named RankCost, to classify imbalanced medical data without using a priori cost. Instead of focusing on improving the class-prediction accuracy, RankCost is to maximize the difference between the minority class and the majority class by using a scoring function, which translates the imbalanced classification problem into a partial ranking problem. The scoring function is learned via a non-parametric boosting algorithm.ResultsWe compare RankCost to several representative approaches on four medical data sets varying in size, imbalanced ratio, and dimension. The experimental results demonstrate that unlike the currently available methods that often perform unevenly with different priori costs, RankCost shows comparable performance in a consistent manner.ConclusionsIt is a challenging task to learn an effective classification model based on imbalanced data in medical data analysis. The traditional approaches often use a priori cost to adjust the learning of the classification function. This work presents a novel approach, namely RankCost, for learning from medical imbalanced data sets without using a priori cost. The experimental results indicate that RankCost performs very well in imbalanced data classification and can be a useful method in real-world applications of medical decision making.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 44 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Belgium 1 2%
Canada 1 2%
Unknown 42 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 8 18%
Student > Master 6 14%
Other 5 11%
Researcher 4 9%
Lecturer 3 7%
Other 8 18%
Unknown 10 23%
Readers by discipline Count As %
Computer Science 13 30%
Nursing and Health Professions 3 7%
Decision Sciences 3 7%
Engineering 3 7%
Economics, Econometrics and Finance 3 7%
Other 4 9%
Unknown 15 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 December 2014.
All research outputs
#15,311,799
of 22,772,779 outputs
Outputs from BMC Medical Informatics and Decision Making
#1,309
of 1,984 outputs
Outputs of similar age
#213,123
of 359,774 outputs
Outputs of similar age from BMC Medical Informatics and Decision Making
#26
of 36 outputs
Altmetric has tracked 22,772,779 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,984 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 359,774 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 31st percentile – i.e., 31% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 36 others from the same source and published within six weeks on either side of this one. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.