↓ Skip to main content

Genomic copy number variation analysis in multiple system atrophy

Overview of attention for article published in Molecular Brain, November 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
4 X users

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
27 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genomic copy number variation analysis in multiple system atrophy
Published in
Molecular Brain, November 2017
DOI 10.1186/s13041-017-0335-6
Pubmed ID
Authors

Yuka Hama, Masataka Katsu, Ichigaku Takigawa, Ichiro Yabe, Masaaki Matsushima, Ikuko Takahashi, Takayuki Katayama, Jun Utsumi, Hidenao Sasaki

Abstract

Genomic variation includes single-nucleotide variants, small insertions or deletions (indels), and copy number variants (CNVs). CNVs affect gene expression by altering the genome structure and transposable elements within a region. CNVs are greater than 1 kb in size; hence, CNVs can produce more variation than can individual single-nucleotide variations that are detected by next-generation sequencing. Multiple system atrophy (MSA) is an α-synucleinopathy adult-onset disorder. Pathologically, it is characterized by insoluble aggregation of filamentous α-synuclein in brain oligodendrocytes. Generally, MSA is sporadic, although there are rare cases of familial MSA. In addition, the frequencies of the clinical phenotypes differ considerably among countries. Reports indicate that genetic factors play roles in the mechanisms involved in the pathology and onset of MSA. To evaluate the genetic background of this disorder, we attempted to determine whether there are differences in CNVs between patients with MSA and normal control subjects. We found that the number of CNVs on chromosomes 5, 22, and 4 was increased in MSA; 3 CNVs in non-coding regions were considered risk factors for MSA. Our results show that CNVs in non-coding regions influence the expression of genes through transcription-related mechanisms and potentially increase subsequent structural alterations of chromosomes. Therefore, these CNVs likely play roles in the molecular mechanisms underlying MSA.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 27 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 11%
Student > Doctoral Student 3 11%
Student > Bachelor 2 7%
Researcher 2 7%
Student > Master 2 7%
Other 4 15%
Unknown 11 41%
Readers by discipline Count As %
Medicine and Dentistry 5 19%
Neuroscience 4 15%
Computer Science 3 11%
Agricultural and Biological Sciences 1 4%
Pharmacology, Toxicology and Pharmaceutical Science 1 4%
Other 1 4%
Unknown 12 44%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 May 2018.
All research outputs
#14,369,287
of 23,009,818 outputs
Outputs from Molecular Brain
#554
of 1,119 outputs
Outputs of similar age
#236,652
of 438,545 outputs
Outputs of similar age from Molecular Brain
#12
of 14 outputs
Altmetric has tracked 23,009,818 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,119 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.1. This one is in the 44th percentile – i.e., 44% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 438,545 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 14 others from the same source and published within six weeks on either side of this one. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.