↓ Skip to main content

Provider initiated tuberculosis case finding in outpatient departments of health care facilities in Ghana: yield by screening strategy and target group

Overview of attention for article published in BMC Infectious Diseases, December 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
149 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Provider initiated tuberculosis case finding in outpatient departments of health care facilities in Ghana: yield by screening strategy and target group
Published in
BMC Infectious Diseases, December 2017
DOI 10.1186/s12879-017-2843-5
Pubmed ID
Authors

Sally-Ann Ohene, Frank Bonsu, Nii Nortey Hanson-Nortey, Ardon Toonstra, Adelaide Sackey, Knut Lonnroth, Mukund Uplekar, Samuel Danso, George Mensah, Felix Afutu, Paul Klatser, Mirjam Bakker

Abstract

Meticulous identification and investigation of patients presenting with tuberculosis (TB) suggestive symptoms rarely happen in crowded outpatient departments (OPDs). Making health providers in OPDs diligently follow screening procedures may help increase TB case detection. From July 2010 to December 2013, two symptom based TB screening approaches of varying cough duration were used to screen and test for TB among general outpatients, PLHIV, diabetics and contacts in Accra, Ghana. This study was a retrospective analysis comparing the yield of TB cases using two different screening approaches, allocated to selected public health facilities. In the first approach, the conventional 2 weeks cough duration with or without other TB suggestive symptoms was the criterion to test for TB in attendants of 7 general OPDs. In the second approach the screening criteria cough of >24 hours, as well as a history of at least one of the following symptoms: fever, weight loss and drenching night sweats were used to screen and test for TB among attendants of 3 general OPDs, 7 HIV clinics and 2 diabetes clinics. Contact investigation was initiated for index TB patients. The facilities documented the number of patients verbally screened, with presumptive TB, tested using smear microscopy and those diagnosed with TB in order to calculate the yield and number needed to screen (NNS) to find one TB case. Case notification trends in Accra were compared to those of a control area. In the approach using >24-hour cough, significantly more presumptive TB cases were identified among outpatients (0.82% versus 0.63%), more were tested (90.1% versus 86.7%), but less smear positive patients were identified among those tested (8.0% versus 9.4%). Overall, all forms of TB cases identified per 100,000 screened were significantly higher in the >24-hour cough approach at OPD (92.7 for cough >24 hour versus 82.7 for cough >2 weeks ), and even higher in diabetics (364), among contacts (693) and PLHIV (995). NNS (95% Confidence Interval) varied from 100 (93-109) for PLHIV, 144 (112-202) for contacts, 275 (197-451) for diabetics and 1144 (1101-1190) for OPD attendants. About 80% of the TB cases were detected in general OPDs. Despite the intervention, notifications trends were similar in the intervention and control areas. The >24-hour cough approach yielded more TB cases though required TB testing for a larger number of patients. The yield of TB cases per 100,000 population screened was highest among PLHIV, contacts, and diabetics, but the majority of cases were detected in general OPDs. The intervention had no discernible impact on general case notification.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 149 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 149 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 28 19%
Researcher 17 11%
Student > Bachelor 14 9%
Student > Ph. D. Student 13 9%
Student > Postgraduate 7 5%
Other 26 17%
Unknown 44 30%
Readers by discipline Count As %
Medicine and Dentistry 37 25%
Nursing and Health Professions 26 17%
Engineering 6 4%
Agricultural and Biological Sciences 5 3%
Immunology and Microbiology 4 3%
Other 20 13%
Unknown 51 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 December 2017.
All research outputs
#20,453,782
of 23,009,818 outputs
Outputs from BMC Infectious Diseases
#6,519
of 7,722 outputs
Outputs of similar age
#373,036
of 437,935 outputs
Outputs of similar age from BMC Infectious Diseases
#126
of 154 outputs
Altmetric has tracked 23,009,818 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,722 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.2. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 437,935 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 154 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.