↓ Skip to main content

Morphological bactericidal fast-acting effects of peracetic acid, a high-level disinfectant, against Staphylococcus aureus and Pseudomonas aeruginosa biofilms in tubing

Overview of attention for article published in Antimicrobial Resistance and Infection Control, December 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (84th percentile)
  • Good Attention Score compared to outputs of the same age and source (69th percentile)

Mentioned by

news
1 news outlet
twitter
3 tweeters

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Morphological bactericidal fast-acting effects of peracetic acid, a high-level disinfectant, against Staphylococcus aureus and Pseudomonas aeruginosa biofilms in tubing
Published in
Antimicrobial Resistance and Infection Control, December 2017
DOI 10.1186/s13756-017-0281-1
Pubmed ID
Authors

T. Chino, Y. Nukui, Y. Morishita, K. Moriya

Abstract

The bactericidal effect of disinfectants against biofilms is essential to reduce potential endoscopy-related infections caused by contamination. Here, we investigated the bactericidal effect of a high-level disinfectant, peracetic acid (PAA), against Staphylococcus aureus and Pseudomonas aeruginosa biofilm models in vitro. S. aureus and P. aeruginosa biofilms were cultured at 35 °C for 7 days with catheter tubes. The following high-level disinfectants (HLDs) were tested: 0.3% PAA, 0.55% ortho-phthalaldehyde (OPA), and 2.0% alkaline-buffered glutaraldehyde (GA). Biofilms were exposed to these agents for 1-60 min and observed after 5 min and 30 min by transmission and scanning electron microscopy. A Student's t test was performed to compare the exposure time required for bactericidal effectiveness of the disinfectants. PAA and GA were active within 1 min and 5 min, respectively, against S. aureus and P. aeruginosa biofilms. OPA took longer than 10 min and 30 min to act against S. aureus and P. aeruginosa biofilms, respectively (p < 0.01). Treatment with PAA elicited changes in cell shape after 5 min and structural damage after 30 min. Amongst the HLDs investigated, PAA elicited the most rapid bactericidal effects against both biofilms. Additionally, treatment with PAA induced morphological alterations in the in vitro biofilm models, suggesting that PAA exerts fast-acting bactericidal effects against biofilms associated with endoscopy-related infections. These findings indicate that the exposure time for bactericidal effectiveness of HLDs for endoscope reprocessing in healthcare settings should be reconsidered.

Twitter Demographics

The data shown below were collected from the profiles of 3 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 32 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 19%
Student > Bachelor 6 19%
Student > Master 3 9%
Other 3 9%
Professor > Associate Professor 2 6%
Other 6 19%
Unknown 6 19%
Readers by discipline Count As %
Immunology and Microbiology 5 16%
Medicine and Dentistry 5 16%
Agricultural and Biological Sciences 4 13%
Engineering 3 9%
Nursing and Health Professions 2 6%
Other 7 22%
Unknown 6 19%

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 December 2017.
All research outputs
#1,192,649
of 12,281,604 outputs
Outputs from Antimicrobial Resistance and Infection Control
#191
of 529 outputs
Outputs of similar age
#51,697
of 345,245 outputs
Outputs of similar age from Antimicrobial Resistance and Infection Control
#12
of 46 outputs
Altmetric has tracked 12,281,604 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 90th percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 529 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 15.3. This one has gotten more attention than average, scoring higher than 62% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 345,245 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 84% of its contemporaries.
We're also able to compare this research output to 46 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 69% of its contemporaries.