↓ Skip to main content

A novel fungus concentration-dependent rat model for acute invasive fungal rhinosinusitis: an experimental study

Overview of attention for article published in BMC Infectious Diseases, December 2014
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
19 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A novel fungus concentration-dependent rat model for acute invasive fungal rhinosinusitis: an experimental study
Published in
BMC Infectious Diseases, December 2014
DOI 10.1186/s12879-014-0713-y
Pubmed ID
Authors

Yuyan Yan, Zuotao Zhao, Hongfei Wan, Ruochen Wu, Jugao Fang, Honggang Liu

Abstract

BackgroundAcute invasive fungal rhinosinusitis is a lethal infectious process afflicting immunocompromised individuals. Knowledge about this disease is still limited due to the scarcity of animal models designed to study the pathogenesis of this infection. Mast cells are tissue-resident immune cells that participate in a variety of allergic and inflammatory conditions. Limited attention has been given to the role of mast cells in acute invasive fungal rhinosinusitis. Therefore, the objectives of this study were to create a rat model of acute invasive fungal rhinosinusitis based on analyzing the impact of different fungal concentrations on establishing infection, and to observe the changes of mast cells in rats with this disease.MethodsSprague¿Dawley rats were divided randomly into four groups, three of which were experimental and received different concentrations of Aspergillus fumigatus inoculations, and one was a control group (D). The inoculated Aspergillus fumigatus concentrations were 5¿×¿107 conidia/ml in group A, 107 conidia/ml in group B, and 106 conidia/ml in group C. Before fungal inoculation, rats were immunosuppressed using cyclophosphamide and cortisone acetate, and had Merocel sponges inserted into the right nares. Hematology and histopathology investigations were then performed.ResultsAn acute invasive fungal rhinosinusitis rat model was established successfully with an incidence rate of 90% in group A, 50% in group B and 10% in group C. Aspergillus fumigatus invasion was observed in 20% of the lungs in group A, but was not seen in the remaining groups. In addition, no fungi invaded the orbital tissue, brains, livers, spleens or kidneys of any rat. Compared with the control set, the total number of mast cells in the experimental groups was not significantly increased, but mast cell degranulation, on the other hand, was only found in infected nasal cavities.ConclusionsThis investigation illustrates that various fungal concentrations have different effects on the incidence of acute invasive fungal rhinosinusitis, and it also demonstrates the feasibility of using this model to study the process of fungal rhinosinusoidal invasion. In addition, the results suggest that mast cells may play a role in the protection of sinuses against acute Aspergillus fumigatus infection and in the clearance of established hyphal masses.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 19 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Japan 1 5%
Unknown 18 95%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 32%
Student > Bachelor 3 16%
Student > Ph. D. Student 1 5%
Student > Master 1 5%
Professor > Associate Professor 1 5%
Other 0 0%
Unknown 7 37%
Readers by discipline Count As %
Medicine and Dentistry 5 26%
Agricultural and Biological Sciences 3 16%
Computer Science 1 5%
Environmental Science 1 5%
Immunology and Microbiology 1 5%
Other 1 5%
Unknown 7 37%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 December 2014.
All research outputs
#18,387,239
of 22,775,504 outputs
Outputs from BMC Infectious Diseases
#5,593
of 7,669 outputs
Outputs of similar age
#255,947
of 353,184 outputs
Outputs of similar age from BMC Infectious Diseases
#136
of 196 outputs
Altmetric has tracked 22,775,504 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,669 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 9.6. This one is in the 15th percentile – i.e., 15% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 353,184 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 196 others from the same source and published within six weeks on either side of this one. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.