↓ Skip to main content

Inhibition of breast cancer cell proliferation and tumorigenesis by long non-coding RNA RPPH1 down-regulation of miR-122 expression

Overview of attention for article published in Cancer Cell International, November 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
1 X user

Citations

dimensions_citation
37 Dimensions

Readers on

mendeley
25 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Inhibition of breast cancer cell proliferation and tumorigenesis by long non-coding RNA RPPH1 down-regulation of miR-122 expression
Published in
Cancer Cell International, November 2017
DOI 10.1186/s12935-017-0480-0
Pubmed ID
Authors

Yi Zhang, Lili Tang

Abstract

Recent studies showed that long non-coding RNA (lncRNA) plays an important role in many life activities. RPPH1 is one of the lncRNA genes that are expressed differently between breast cancer and normal tissues by the lncRNA gene chip. Our study was conducted to examine the regulation of lncRNA RPPH1 in breast cancer. Two cell lines, MCF-7 and MDA-MB-231, were selected to be the research objects in this study; RPPH1 overexpression and knockdown models were established by transforming vectors. Real-time polymerase chain reaction, MTT assay, clone formation and cell flow cytometer assay were used to test the function of RPPH1. Dual-luciferase assay was used to detect a target relationship between RPPH1 and miR-122. RPPH1 overexpression promoted cell cycle and proliferation and increased colony formation. In the RPPH1 overexpression model, there was a target relationship between RPPH1 and miR-122, and some of the downstream genes of miR-122, including ADAM10, PKM2, NOD2 and IGF1R, were increased. Moreover, we found that lentivirus-mediated interference of lncRNA RPPH1 inhibited tumour growth in nude mice. Breast cancer progression can be promoted by directly targeting miR-122 through lncRNA RPPH1. This study provided evidence that can serve as the molecular basis for improving treatment options for patients.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 25 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 28%
Student > Bachelor 4 16%
Other 3 12%
Student > Doctoral Student 2 8%
Student > Master 2 8%
Other 1 4%
Unknown 6 24%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 6 24%
Agricultural and Biological Sciences 3 12%
Medicine and Dentistry 3 12%
Engineering 2 8%
Immunology and Microbiology 1 4%
Other 3 12%
Unknown 7 28%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 December 2017.
All research outputs
#20,663,600
of 25,382,440 outputs
Outputs from Cancer Cell International
#1,548
of 2,231 outputs
Outputs of similar age
#339,240
of 445,582 outputs
Outputs of similar age from Cancer Cell International
#11
of 26 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 10th percentile – i.e., 10% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,231 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.2. This one is in the 19th percentile – i.e., 19% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 445,582 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 26 others from the same source and published within six weeks on either side of this one. This one is in the 46th percentile – i.e., 46% of its contemporaries scored the same or lower than it.