↓ Skip to main content

Google as a cancer control tool in Queensland

Overview of attention for article published in BMC Cancer, December 2017
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (54th percentile)
  • Good Attention Score compared to outputs of the same age and source (67th percentile)

Mentioned by

twitter
4 X users

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
39 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Google as a cancer control tool in Queensland
Published in
BMC Cancer, December 2017
DOI 10.1186/s12885-017-3828-x
Pubmed ID
Authors

Xiaodong Huang, Peter Baade, Danny R. Youlden, Philippa H. Youl, Wenbiao Hu, Michael G. Kimlin

Abstract

Recent advances in methodologies utilizing "big data" have allowed researchers to investigate the use of common internet search engines as a real time tool to track disease. Little is known about its utility with tracking cancer incidence. This study aims to investigate the potential correlates of monthly internet search volume indexes (SVIs) and observed monthly age standardised incidence rates (ASRs) for breast cancer, colorectal cancer, melanoma and prostate cancer. The monthly ASRs for the four cancers in Queensland were calculated using data from the Queensland Cancer Registry between January 2006 and December 2012. The monthly SVIs of the respective cancer search terms in Queensland were accessed from Google Trends for the same period. A time series seasonal decomposition method was performed to detect the seasonal patterns of SVIs and ASRs. Pearson's correlation coefficient and time series cross-correlation analysis were used to assess the associations between SVIs and ASRs. Linear regression models were used to examine the power of SVIs to predict monthly in ASRs. Increases in the monthly ASRs of the four cancers were significantly correlated with increases in the monthly SVIs of the respective cancers except for colorectal cancer. The predictive power of the SVIs to explain variances in the corresponding ASRs varied by cancer type, with the percent explained ranging from 5.6% for breast cancer to 17.9% for skin cancer (SVI) with melanoma (ASR). Some improvement in the variation explained was obtained by including more search terms or lagged SVIs for the respective cancers in the linear regression models. The seasonal analysis indicated that the SVIs peaked periodically at around their respective cancer awareness months. Using SVIs from a popular internet search engine was only able to explain a small portion of changes in the respective ASRs. While an expanded regression model explained a higher proportion of variability, the interpretation of this was difficult. Further development and refinement of this approach will be needed before search-based cancer surveillance can provide useful information regarding resource deployment to guide cancer control and track the impact of cancer awareness and education programmes.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 39 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 39 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 6 15%
Student > Bachelor 5 13%
Professor 3 8%
Student > Postgraduate 3 8%
Researcher 3 8%
Other 9 23%
Unknown 10 26%
Readers by discipline Count As %
Medicine and Dentistry 10 26%
Psychology 4 10%
Business, Management and Accounting 3 8%
Computer Science 3 8%
Economics, Econometrics and Finance 2 5%
Other 4 10%
Unknown 13 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 March 2019.
All research outputs
#12,765,116
of 23,009,818 outputs
Outputs from BMC Cancer
#2,662
of 8,359 outputs
Outputs of similar age
#196,098
of 439,388 outputs
Outputs of similar age from BMC Cancer
#56
of 179 outputs
Altmetric has tracked 23,009,818 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 8,359 research outputs from this source. They receive a mean Attention Score of 4.3. This one has gotten more attention than average, scoring higher than 67% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 439,388 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 54% of its contemporaries.
We're also able to compare this research output to 179 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 67% of its contemporaries.