↓ Skip to main content

Unique molecular mechanisms for maintenance and alteration of genetic information in the budding yeast Saccharomyces cerevisiae

Overview of attention for article published in Genes and Environment, December 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Unique molecular mechanisms for maintenance and alteration of genetic information in the budding yeast Saccharomyces cerevisiae
Published in
Genes and Environment, December 2017
DOI 10.1186/s41021-017-0088-6
Pubmed ID
Authors

Sayoko Ito-Harashima, Takashi Yagi

Abstract

The high-fidelity transmission of genetic information is crucial for the survival of organisms, the cells of which have the ability to protect DNA against endogenous and environmental agents, including reactive oxygen species (ROS), ionizing radiation, and various chemical compounds. The basis of protection mechanisms has been evolutionarily conserved from yeast to humans; however, each organism often has a specialized mode of regulation that uses different sets of machineries, particularly in lower eukaryotes. The divergence of molecular mechanisms among related organisms has provided insights into the evolution of cellular machineries to a higher architecture. Uncommon characteristics of machineries may also contribute to the development of new applications such as drugs with novel mechanisms of action. In contrast to the cellular properties for maintaining genetic information, living organisms, particularly microbes, inevitably undergo genetic alterations in order to adapt to environmental conditions. The maintenance and alteration of genetic information may be inextricably linked to each other. In this review, we describe recent findings on the unconventional molecular mechanisms of DNA damage response and DNA double-strand break (DSB) repair in the budding yeast Saccharomyces cerevisiae. We also introduce our previous research on genetic and phenotypic instabilities observed in a clonal population of clinically-derived S. cerevisiae. The molecular mechanisms of this case were associated with mutations to generate tyrosine-inserting tRNA-Tyr ochre suppressors and the position effects of mutation frequencies among eight tRNA-Tyr loci dispersed in the genome. Phenotypic variations among different strain backgrounds have also been observed by another type of nonsense suppressor, the aberrant form of the translation termination factor. Nonsense suppressors are considered to be responsible for the genome-wide translational readthrough of termination codons, including natural nonsense codons. The nonsense suppressor-mediated acquisition of phenotypic variations may be advantageous for adaptation to environmental conditions and survival during evolution.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 6 27%
Student > Master 4 18%
Student > Doctoral Student 2 9%
Lecturer 2 9%
Researcher 2 9%
Other 4 18%
Unknown 2 9%
Readers by discipline Count As %
Agricultural and Biological Sciences 7 32%
Biochemistry, Genetics and Molecular Biology 6 27%
Immunology and Microbiology 3 14%
Unspecified 1 5%
Physics and Astronomy 1 5%
Other 0 0%
Unknown 4 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 December 2017.
All research outputs
#22,764,772
of 25,382,440 outputs
Outputs from Genes and Environment
#114
of 135 outputs
Outputs of similar age
#384,359
of 444,941 outputs
Outputs of similar age from Genes and Environment
#2
of 3 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 135 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.9. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 444,941 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 3 others from the same source and published within six weeks on either side of this one.