↓ Skip to main content

Immature morphological properties in subcellular-scale structures in the dentate gyrus of Schnurri-2 knockout mice: a model for schizophrenia and intellectual disability

Overview of attention for article published in Molecular Brain, December 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (82nd percentile)
  • Good Attention Score compared to outputs of the same age and source (79th percentile)

Mentioned by

blogs
1 blog
twitter
5 tweeters

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
46 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Immature morphological properties in subcellular-scale structures in the dentate gyrus of Schnurri-2 knockout mice: a model for schizophrenia and intellectual disability
Published in
Molecular Brain, December 2017
DOI 10.1186/s13041-017-0339-2
Pubmed ID
Authors

Akito Nakao, Naoyuki Miyazaki, Koji Ohira, Hideo Hagihara, Tsuyoshi Takagi, Nobuteru Usuda, Shunsuke Ishii, Kazuyoshi Murata, Tsuyoshi Miyakawa

Abstract

Accumulating evidence suggests that subcellular-scale structures such as dendritic spine and mitochondria may be involved in the pathogenesis/pathophysiology of schizophrenia and intellectual disability. Previously, we proposed mice lacking Schnurri-2 (Shn2; also called major histocompatibility complex [MHC]-binding protein 2 [MBP-2], or human immunodeficiency virus type I enhancer binding protein 2 [HIVEP2]) as a schizophrenia and intellectual disability model with mild chronic inflammation. In the mutants' brains, there are increases in C4b and C1q genes, which are considered to mediate synapse elimination during postnatal development. However, morphological properties of subcellular-scale structures such as dendritic spine in Shn2 knockout (KO) mice remain unknown. In this study, we conducted three-dimensional morphological analyses in subcellular-scale structures in dentate gyrus granule cells of Shn2 KO mice by serial block-face scanning electron microscopy. Shn2 KO mice showed immature dendritic spine morphology characterized by increases in spine length and decreases in spine diameter. There was a non-significant tendency toward decrease in spine density of Shn2 KO mice over wild-type mice, and spine volume was indistinguishable between genotypes. Shn2 KO mice exhibited a significant reduction in GluR1 expression and a nominally significant decrease in SV2 expression, while PSD95 expression had a non-significant tendency to decrease in Shn2 KO mice. There were significant decreases in dendrite diameter, nuclear volume, and the number of constricted mitochondria in the mutants. Additionally, neuronal density was elevated in Shn2 KO mice. These results suggest that Shn2 KO mice serve as a unique tool for investigating morphological abnormalities of subcellular-scale structures in schizophrenia, intellectual disability, and its related disorders.

Twitter Demographics

The data shown below were collected from the profiles of 5 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 46 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 46 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 7 15%
Student > Bachelor 7 15%
Researcher 6 13%
Student > Ph. D. Student 5 11%
Student > Postgraduate 3 7%
Other 9 20%
Unknown 9 20%
Readers by discipline Count As %
Neuroscience 9 20%
Medicine and Dentistry 8 17%
Agricultural and Biological Sciences 7 15%
Biochemistry, Genetics and Molecular Biology 4 9%
Immunology and Microbiology 2 4%
Other 6 13%
Unknown 10 22%

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 June 2020.
All research outputs
#2,385,194
of 17,891,883 outputs
Outputs from Molecular Brain
#138
of 921 outputs
Outputs of similar age
#73,368
of 419,706 outputs
Outputs of similar age from Molecular Brain
#11
of 59 outputs
Altmetric has tracked 17,891,883 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 921 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.3. This one has done well, scoring higher than 84% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 419,706 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 82% of its contemporaries.
We're also able to compare this research output to 59 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 79% of its contemporaries.