↓ Skip to main content

Genome-wide mRNA expression profiling in vastus lateralis of COPD patients with low and normal fat free mass index and healthy controls

Overview of attention for article published in Respiratory Research, January 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (89th percentile)
  • High Attention Score compared to outputs of the same age and source (89th percentile)

Mentioned by

news
1 news outlet
twitter
4 X users
facebook
1 Facebook page
googleplus
1 Google+ user

Citations

dimensions_citation
47 Dimensions

Readers on

mendeley
73 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genome-wide mRNA expression profiling in vastus lateralis of COPD patients with low and normal fat free mass index and healthy controls
Published in
Respiratory Research, January 2015
DOI 10.1186/s12931-014-0139-5
Pubmed ID
Authors

Roberto A Rabinovich, Ellen Drost, Jonathan R Manning, Donald R Dunbar, MaCarmen Díaz-Ramos, Ramzi Lakhdar, Ricardo Bastos, William MacNee

Abstract

BackgroundChronic Obstructive Pulmonary Disease (COPD) has significant systemic effects beyond the lungs amongst which muscle wasting is a prominent contributor to exercise limitation and an independent predictor of morbidity and mortality. The molecular mechanisms leading to skeletal muscle dysfunction/wasting are not fully understood and are likely to be multi-factorial. The need to develop therapeutic strategies aimed at improving skeletal muscle dysfunction/wasting requires a better understanding of the molecular mechanisms responsible for these abnormalities. Microarrays are powerful tools that allow the investigation of the expression of thousands of genes, virtually the whole genome, simultaneously. We aim at identifying genes and molecular pathways involved in skeletal muscle wasting in COPD.MethodsWe assessed and compared the vastus lateralis transcriptome of COPD patients with low fat free mass index (FFMI) as a surrogate of muscle mass (COPDL) (FEV1 30¿±¿3.6%pred, FFMI 15¿±¿0.2 Kg.m¿2) with patients with COPD and normal FFMI (COPDN) (FEV1 44¿±¿5.8%pred, FFMI 19¿±¿0.5 Kg.m¿2) and a group of age and sex matched healthy controls (C) (FEV1 95¿±¿3.9%pred, FFMI 20¿±¿0.8 Kg.m¿2) using Agilent Human Whole Genome 4x44K microarrays. The altered expression of several of these genes was confirmed by real time TaqMan PCR. Protein levels of P21 were assessed by immunoblotting.ResultsA subset of 42 genes was differentially expressed in COPDL in comparison to both COPDN and C (PFP¿<¿0.05; ¿1.5¿¿¿FC¿¿¿1.5). The altered expression of several of these genes was confirmed by real time TaqMan PCR and correlated with different functional and structural muscle parameters. Five of these genes (CDKN1A, GADD45A, PMP22, BEX2, CGREF1, CYR61), were associated with cell cycle arrest and growth regulation and had been previously identified in studies relating muscle wasting and ageing. Protein levels of CDKN1A, a recognized marker of premature ageing/cell cycle arrest, were also found to be increased in COPDL.ConclusionsThis study provides evidence of differentially expressed genes in peripheral muscle in COPD patients corresponding to relevant biological processes associated with skeletal muscle wasting and provides potential targets for future therapeutic interventions to prevent loss of muscle function and mass in COPD.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 73 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 1%
Spain 1 1%
Canada 1 1%
Unknown 70 96%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 13 18%
Student > Master 13 18%
Student > Ph. D. Student 8 11%
Researcher 7 10%
Student > Doctoral Student 6 8%
Other 8 11%
Unknown 18 25%
Readers by discipline Count As %
Medicine and Dentistry 19 26%
Nursing and Health Professions 8 11%
Biochemistry, Genetics and Molecular Biology 6 8%
Sports and Recreations 5 7%
Agricultural and Biological Sciences 2 3%
Other 10 14%
Unknown 23 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 13. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 June 2015.
All research outputs
#2,759,459
of 25,371,288 outputs
Outputs from Respiratory Research
#315
of 3,062 outputs
Outputs of similar age
#36,919
of 358,873 outputs
Outputs of similar age from Respiratory Research
#5
of 49 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. Compared to these this one has done well and is in the 89th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,062 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.9. This one has done well, scoring higher than 89% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 358,873 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 89% of its contemporaries.
We're also able to compare this research output to 49 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 89% of its contemporaries.