↓ Skip to main content

Genome-wide identification, characterization, and evolutionary analysis of flowering genes in radish (Raphanus sativus L.)

Overview of attention for article published in BMC Genomics, December 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
27 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genome-wide identification, characterization, and evolutionary analysis of flowering genes in radish (Raphanus sativus L.)
Published in
BMC Genomics, December 2017
DOI 10.1186/s12864-017-4377-z
Pubmed ID
Authors

Jinglei Wang, Yang Qiu, Feng Cheng, Xiaohua Chen, Xiaohui Zhang, Haiping Wang, Jiangping Song, Mengmeng Duan, Haohui Yang, Xixiang Li

Abstract

Radish (Raphanus sativus L.) belongs to the family Brassicaceae, and is an economically important root crop grown worldwide. Flowering is necessary for plant propagation, but it is also an important agronomic trait influencing R. sativus fleshy taproot yield and quality in the case of an imbalance between vegetative and reproductive growth. There is currently a lack of detailed information regarding the pathways regulating the flowering genes or their evolution in R. sativus. The release of the R. sativus genome sequence provides an opportunity to identify and characterize the flowering genes using a comparative genomics approach. We identified 254 R. sativus flowering genes based on sequence similarities and analyses of syntenic regions. The genes were unevenly distributed on the various chromosomes. Furthermore, we discovered the existence of R. sativus core function genes in the flowering regulatory network, which revealed that basic flowering pathways are relatively conserved between Arabidopsis thaliana and R. sativus. Additional comparisons with Brassica oleracea and Brassica rapa indicated that the retained flowering genes differed among species after genome triplication events. The R. sativus flowering genes were preferentially retained, especially those associated with gibberellin signaling and metabolism. Moreover, analyses of selection pressures suggested that the genes in vernalization and autonomous pathways were more variable than the genes in other R. sativus flowering pathways. Our results revealed that the core flowering genes are conserved between R. sativus and A. thaliana to a certain extent. Moreover, the copy number variation and functional differentiation of the homologous genes in R. sativus increased the complexity of the flowering regulatory networks after genome polyploidization. Our study provides an integrated framework for the R. sativus flowering pathways and insights into the evolutionary relationships between R. sativus flowering genes and the genes from A. thaliana and close relatives.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 27 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 15%
Researcher 4 15%
Student > Master 4 15%
Student > Bachelor 3 11%
Other 2 7%
Other 2 7%
Unknown 8 30%
Readers by discipline Count As %
Agricultural and Biological Sciences 10 37%
Biochemistry, Genetics and Molecular Biology 5 19%
Chemical Engineering 1 4%
Computer Science 1 4%
Engineering 1 4%
Other 0 0%
Unknown 9 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 June 2018.
All research outputs
#15,486,175
of 23,012,811 outputs
Outputs from BMC Genomics
#6,724
of 10,697 outputs
Outputs of similar age
#268,102
of 440,404 outputs
Outputs of similar age from BMC Genomics
#136
of 225 outputs
Altmetric has tracked 23,012,811 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,697 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 28th percentile – i.e., 28% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 440,404 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 225 others from the same source and published within six weeks on either side of this one. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.