↓ Skip to main content

Evaluation of reproductive barriers contributes to the development of novel interspecific hybrids in the Kalanchoë genus

Overview of attention for article published in BMC Plant Biology, January 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
42 Dimensions

Readers on

mendeley
55 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Evaluation of reproductive barriers contributes to the development of novel interspecific hybrids in the Kalanchoë genus
Published in
BMC Plant Biology, January 2015
DOI 10.1186/s12870-014-0394-0
Pubmed ID
Authors

Katarzyna Kuligowska, Henrik Lütken, Brian Christensen, Ib Skovgaard, Marcus Linde, Traud Winkelmann, Renate Müller

Abstract

BackgroundInterspecific hybridization is a useful tool in ornamental breeding to increase genetic variability and introduce new valuable traits into existing cultivars. The successful formation of interspecific hybrids is frequently limited by the presence of pre- and post-fertilization barriers. In the present study, we investigated the nature of hybridization barriers occurring in crosses between Kalanchoë species and evaluated possibilities of obtaining interspecific hybrids.ResultsThe qualitative and quantitative analyses of pollen tube growth in situ were performed following intra- and interspecific pollinations. They revealed occurrence of pre-fertilization barriers associated with inhibition of pollen germination on the stigma and abnormal growth of pollen tubes. Unilateral incongruity related to differences in pistil length was also observed. The pollen quality was identified as a strong factor influencing the number of pollen tubes germinating in the stigma. In relation to post-fertilization barriers, endosperm degeneration was a probable barrier hampering production of interspecific hybrids. Moreover, our results demonstrate the relation of genetic distance estimated by AFLP marker analysis of hybridization partners with cross-compatibility of Kalanchoë species. At the same time, differences in ploidy did not influence the success of interspecific crosses.ConclusionsOur study presents the first comprehensive analysis of hybridization barriers occurring within Kalanchoë genus. Reproductive barriers were detected on both, pre- and post-fertilization levels. This new knowledge will contribute to further understanding of reproductive isolation of Kalanchoë species and facilitate breeding of new cultivars. For the first time, interspecific hybrids between K. nyikae as maternal plant and K. blossfeldiana as well as K. blossfeldiana and K. marnieriana were generated.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 55 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 55 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 10 18%
Student > Master 9 16%
Researcher 7 13%
Student > Ph. D. Student 6 11%
Student > Postgraduate 5 9%
Other 8 15%
Unknown 10 18%
Readers by discipline Count As %
Agricultural and Biological Sciences 30 55%
Biochemistry, Genetics and Molecular Biology 3 5%
Engineering 3 5%
Environmental Science 1 2%
Pharmacology, Toxicology and Pharmaceutical Science 1 2%
Other 4 7%
Unknown 13 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 January 2015.
All research outputs
#19,942,887
of 25,371,288 outputs
Outputs from BMC Plant Biology
#2,175
of 3,587 outputs
Outputs of similar age
#253,120
of 359,534 outputs
Outputs of similar age from BMC Plant Biology
#53
of 95 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,587 research outputs from this source. They receive a mean Attention Score of 3.0. This one is in the 33rd percentile – i.e., 33% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 359,534 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 95 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.