↓ Skip to main content

The molecular evolutionary dynamics of oxidative phosphorylation (OXPHOS) genes in Hymenoptera

Overview of attention for article published in BMC Ecology and Evolution, December 2017
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (66th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
6 X users
facebook
1 Facebook page

Citations

dimensions_citation
35 Dimensions

Readers on

mendeley
37 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
The molecular evolutionary dynamics of oxidative phosphorylation (OXPHOS) genes in Hymenoptera
Published in
BMC Ecology and Evolution, December 2017
DOI 10.1186/s12862-017-1111-z
Pubmed ID
Authors

Yiyuan Li, Rui Zhang, Shanlin Liu, Alexander Donath, Ralph S. Peters, Jessica Ware, Bernhard Misof, Oliver Niehuis, Michael E. Pfrender, Xin Zhou

Abstract

The primary energy-producing pathway in eukaryotic cells, the oxidative phosphorylation (OXPHOS) system, comprises proteins encoded by both mitochondrial and nuclear genes. To maintain the function of the OXPHOS system, the pattern of substitutions in mitochondrial and nuclear genes may not be completely independent. It has been suggested that slightly deleterious substitutions in mitochondrial genes are compensated by substitutions in the interacting nuclear genes due to positive selection. Among the four largest insect orders, Coleoptera (beetles), Hymenoptera (sawflies, wasps, ants, and bees), Diptera (midges, mosquitoes, and flies) and Lepidoptera (moths and butterflies), the mitochondrial genes of Hymenoptera exhibit an exceptionally high amino acid substitution rate while the evolution of nuclear OXPHOS genes is largely unknown. Therefore, Hymenoptera is an excellent model group for testing the hypothesis of positive selection driving the substitution rate of nuclear OXPHOS genes. In this study, we report the evolutionary rate of OXPHOS genes in Hymenoptera and test for evidence of positive selection in nuclear OXPHOS genes of Hymenoptera. Our analyses revealed that the amino acid substitution rate of mitochondrial and nuclear OXPHOS genes in Hymenoptera is higher than that in other studied insect orders. In contrast, the amino acid substitution rate of non-OXPHOS genes in Hymenoptera is lower than the rate in other insect orders. Overall, we found the dN/dS ratio of the nuclear OXPHOS genes to be higher in Hymenoptera than in other insect orders. However, nuclear OXPHOS genes with high dN/dS ratio did not always exhibit a high amino acid substitution rate. Using branch-site and site model tests, we identified various codon sites that evolved under positive selection in nuclear OXPHOS genes. Our results showed that nuclear OXPHOS genes in Hymenoptera are evolving faster than the genes in other three insect orders. The branch test suggested that while some nuclear OXPHOS genes in Hymenoptera show a signature of positive selection, the pattern is not consistent across all nuclear OXPHOS genes. As only few codon sites were under positive selection, we suggested that positive selection might not be the only factor contributing to the rapid evolution of nuclear OXPHOS genes in Hymenoptera.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 37 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 37 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 16%
Student > Bachelor 6 16%
Student > Master 5 14%
Researcher 4 11%
Student > Doctoral Student 3 8%
Other 6 16%
Unknown 7 19%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 14 38%
Agricultural and Biological Sciences 11 30%
Environmental Science 1 3%
Medicine and Dentistry 1 3%
Engineering 1 3%
Other 0 0%
Unknown 9 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 December 2017.
All research outputs
#7,963,683
of 25,382,440 outputs
Outputs from BMC Ecology and Evolution
#1,833
of 3,714 outputs
Outputs of similar age
#148,033
of 448,935 outputs
Outputs of similar age from BMC Ecology and Evolution
#49
of 77 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one has received more attention than most of these and is in the 67th percentile.
So far Altmetric has tracked 3,714 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.5. This one is in the 48th percentile – i.e., 48% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 448,935 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.
We're also able to compare this research output to 77 others from the same source and published within six weeks on either side of this one. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.