↓ Skip to main content

Characterization of pediatric cystic fibrosis airway epithelial cell cultures at the air-liquid interface obtained by non-invasive nasal cytology brush sampling

Overview of attention for article published in Respiratory Research, December 2017
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
4 X users

Citations

dimensions_citation
23 Dimensions

Readers on

mendeley
75 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Characterization of pediatric cystic fibrosis airway epithelial cell cultures at the air-liquid interface obtained by non-invasive nasal cytology brush sampling
Published in
Respiratory Research, December 2017
DOI 10.1186/s12931-017-0706-7
Pubmed ID
Authors

Aline Schögler, Fabian Blank, Melanie Brügger, Seraina Beyeler, Stefan A. Tschanz, Nicolas Regamey, Carmen Casaulta, Thomas Geiser, Marco P. Alves

Abstract

In vitro systems of primary cystic fibrosis (CF) airway epithelial cells are an important tool to study molecular and functional features of the native respiratory epithelium. However, undifferentiated CF airway cell cultures grown under submerged conditions do not appropriately represent the physiological situation. A more advanced CF cell culture system based on airway epithelial cells grown at the air-liquid interface (ALI) recapitulates most of the in vivo-like properties but requires the use of invasive sampling methods. In this study, we describe a detailed characterization of fully differentiated primary CF airway epithelial cells obtained by non-invasive nasal brushing of pediatric patients. Differentiated cell cultures were evaluated with immunolabelling of markers for ciliated, mucus-secreting and basal cells, and tight junction and CFTR proteins. Epithelial morphology and ultrastructure was examined by histology and transmission electron microscopy. Ciliary beat frequency was investigated by a video-microscopy approach and trans-epithelial electrical resistance was assessed with an epithelial Volt-Ohm meter system. Finally, epithelial permeability was analysed by using a cell layer integrity test and baseline cytokine levels where measured by an enzyme-linked immunosorbent assay. Pediatric CF nasal cultures grown at the ALI showed a differentiation into a pseudostratified epithelium with a mucociliary phenotype. Also, immunofluorescence analysis revealed the presence of ciliated, mucus-secreting and basal cells and tight junctions. CFTR protein expression was observed in CF (F508del/F508del) and healthy cultures and baseline interleukin (IL)-8 and IL-6 release were similar in control and CF ALI cultures. The ciliary beat frequency was 9.67 Hz and the differentiated pediatric CF epithelium was found to be functionally tight. In summary, primary pediatric CF nasal epithelial cell cultures grown at the ALI showed full differentiation into ciliated, mucus-producing and basal cells, which adequately reflect the in vivo properties of the human respiratory epithelium.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 75 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 75 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 17 23%
Researcher 12 16%
Student > Bachelor 5 7%
Other 5 7%
Student > Master 4 5%
Other 9 12%
Unknown 23 31%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 15 20%
Immunology and Microbiology 10 13%
Medicine and Dentistry 10 13%
Agricultural and Biological Sciences 7 9%
Pharmacology, Toxicology and Pharmaceutical Science 3 4%
Other 5 7%
Unknown 25 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 February 2018.
All research outputs
#15,745,807
of 25,382,440 outputs
Outputs from Respiratory Research
#1,762
of 3,062 outputs
Outputs of similar age
#247,184
of 448,935 outputs
Outputs of similar age from Respiratory Research
#42
of 57 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,062 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.9. This one is in the 38th percentile – i.e., 38% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 448,935 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 57 others from the same source and published within six weeks on either side of this one. This one is in the 15th percentile – i.e., 15% of its contemporaries scored the same or lower than it.