↓ Skip to main content

Critical illness and flat batteries

Overview of attention for article published in Critical Care, December 2017
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (79th percentile)

Mentioned by

twitter
17 X users

Readers on

mendeley
82 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Critical illness and flat batteries
Published in
Critical Care, December 2017
DOI 10.1186/s13054-017-1913-9
Pubmed ID
Authors

Mervyn Singer

Abstract

An exaggerated, dysregulated host response to insults such as infection (i.e. sepsis), trauma and ischaemia-reperfusion injury can result in multiple organ dysfunction and death. While the focus of research in this area has largely centred on inflammation and immunity, a crucial missing link is the precise identification of mechanisms at the organ level that cause this physiological-biochemical failure. Any hypothesis must reconcile this functional organ failure with minimal signs of cell death, availability of oxygen, and (often) minimal early local inflammatory cell infiltrate. These failed organs also retain the capacity to usually recover, even those that are poorly regenerative. A metabolic-bioenergetic shutdown, akin to hibernation or aestivation, is the most plausible explanation currently advanced. This shutdown appears driven by a perfect storm of compromised mitochondrial oxidative phosphorylation related to inhibition by excessive inflammatory mediators, direct oxidant stress, a tissue oxygen deficit in the unresuscitated phase, altered hormonal drive, and downregulation of genes encoding mitochondrial proteins. In addition, the efficiency of oxidative phosphorylation may be affected by a substrate shift towards fat metabolism and increased uncoupling. A lack of sufficient ATP provision to fuel normal metabolic processes will drive downregulation of metabolism, and thus cellular functionality. In turn, a decrease in metabolism will provide negative feedback to the mitochondrion, inducing a bioenergetic shutdown. Arguably, these processes may offer protection against a prolonged inflammatory hit by sparing the cell from initiation of death pathways, thereby explaining the lack of significant morphological change. A narrow line may exist between adaptation and maladaptation. This places a considerable challenge on any therapeutic modulation to provide benefit rather than harm.

X Demographics

X Demographics

The data shown below were collected from the profiles of 17 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 82 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 82 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 15%
Other 9 11%
Student > Master 8 10%
Student > Bachelor 8 10%
Student > Postgraduate 6 7%
Other 17 21%
Unknown 22 27%
Readers by discipline Count As %
Medicine and Dentistry 37 45%
Agricultural and Biological Sciences 5 6%
Biochemistry, Genetics and Molecular Biology 3 4%
Nursing and Health Professions 3 4%
Veterinary Science and Veterinary Medicine 1 1%
Other 5 6%
Unknown 28 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 February 2018.
All research outputs
#4,537,346
of 25,382,440 outputs
Outputs from Critical Care
#3,132
of 6,555 outputs
Outputs of similar age
#90,203
of 448,935 outputs
Outputs of similar age from Critical Care
#78
of 90 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done well and is in the 82nd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 6,555 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 20.8. This one has gotten more attention than average, scoring higher than 52% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 448,935 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 79% of its contemporaries.
We're also able to compare this research output to 90 others from the same source and published within six weeks on either side of this one. This one is in the 13th percentile – i.e., 13% of its contemporaries scored the same or lower than it.