↓ Skip to main content

An analytical framework to derive the expected precision of genomic selection

Overview of attention for article published in Genetics Selection Evolution, December 2017
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
16 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
An analytical framework to derive the expected precision of genomic selection
Published in
Genetics Selection Evolution, December 2017
DOI 10.1186/s12711-017-0366-6
Pubmed ID
Authors

Jean-Michel Elsen

Abstract

Formulae to predict the precision or accuracy of genomic estimated breeding values (GEBV) are important when modelling selection schemes. Simple versions of such formulae have been proposed in the past, based on a number of simplifying hypotheses, including absence of linkage disequilibrium and linkage between loci, a population made up of unrelated individuals, and that all genetic variability of the trait is explained by the genotyped loci. These formulae were based on approximations that were not always clear. The objective of this paper is to offer a unique framework to derive equations that predict the precision of GEBV from the size of the reference population and the heritability of and number of QTL controlling the quantitative trait. The exact formulation of the precision of GEBV involves the expectation of the inverse of a linear function of the genomic matrix, which cannot be calculated from simple algebra but can be approximated using a Taylor polynomial expansion. First order approximations performed better than the initial prediction equations published in the literature. Second order approximations produced almost perfect estimates of precision when compared to results obtained when simulating situations that agreed with the assumptions that were required to derive the precision equations. Using this proposed framework, we present several generalizations, including multi-trait genomic evaluation. Although further improvements are needed to account for the complexity of practical situations, the equations proposed here can be used to derive the precision of GEBV when comparing breeding schemes a priori.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 16 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 25%
Student > Ph. D. Student 4 25%
Student > Master 3 19%
Lecturer 1 6%
Student > Postgraduate 1 6%
Other 0 0%
Unknown 3 19%
Readers by discipline Count As %
Agricultural and Biological Sciences 10 63%
Biochemistry, Genetics and Molecular Biology 1 6%
Unknown 5 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 September 2018.
All research outputs
#19,951,180
of 25,382,440 outputs
Outputs from Genetics Selection Evolution
#640
of 821 outputs
Outputs of similar age
#324,807
of 449,047 outputs
Outputs of similar age from Genetics Selection Evolution
#12
of 13 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 18th percentile – i.e., 18% of other outputs scored the same or lower than it.
So far Altmetric has tracked 821 research outputs from this source. They receive a mean Attention Score of 4.1. This one is in the 19th percentile – i.e., 19% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 449,047 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 13 others from the same source and published within six weeks on either side of this one. This one is in the 7th percentile – i.e., 7% of its contemporaries scored the same or lower than it.