↓ Skip to main content

Differential induction of malaria liver pathology in mice infected with Plasmodium chabaudi AS or Plasmodium berghei NK65

Overview of attention for article published in Malaria Journal, January 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
77 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Differential induction of malaria liver pathology in mice infected with Plasmodium chabaudi AS or Plasmodium berghei NK65
Published in
Malaria Journal, January 2018
DOI 10.1186/s12936-017-2159-3
Pubmed ID
Authors

Diletta Scaccabarozzi, Katrien Deroost, Yolanda Corbett, Natacha Lays, Paola Corsetto, Fausta Omodeo Salè, Philippe E. Van den Steen, Donatella Taramelli

Abstract

Cerebral malaria and severe anaemia are the most common deadly complications of malaria, and are often associated, both in paediatric and adult patients, with hepatopathy, whose pathogenesis is not well characterized, and sometimes also with acute respiratory distress syndrome (ARDS). Here, two species of murine malaria, the lethal Plasmodium berghei strain NK65 and self-healing Plasmodium chabaudi strain AS which differ in their ability to cause hepatopathy and/or ARDS were used to investigate the lipid alterations, oxidative damage and host immune response during the infection in relation to parasite load and accumulation of parasite products, such as haemozoin. Plasma and livers of C57BL/6J mice injected with PbNK65 or PcAS infected erythrocytes were collected at different times and tested for parasitaemia, content of haemozoin and expression of tumour necrosis factor (TNF). Hepatic enzymes, antioxidant defenses and lipids content and composition were also evaluated. In the livers of P. berghei NK65 infected mice both parasites and haemozoin accumulated to a greater extent than in livers of P. chabaudi AS infected mice although in the latter hepatomegaly was more prominent. Hepatic enzymes and TNF were increased in both models. Moreover, in P. berghei NK65 infected mice, increased lipid peroxidation, accumulation of triglycerides, impairment of anti-oxidant enzymes and higher collagen deposition were detected. On the contrary, in P. chabaudi AS infected mice the antioxidant enzymes and the lipid content and composition were normal or even lower than uninfected controls. This study demonstrates that in C57BL/6J mice, depending on the parasite species, malaria-induced liver pathology results in different manifestations, which may contribute to the different outcomes. In P. berghei NK65 infected mice, which concomitantly develop lethal acute respiratory distress syndrome, the liver tissue is characterized by an excess oxidative stress response and reduced antioxidant defenses while in P. chabaudi AS infected mice hepatopathy does not lead to lipid alterations or reduction of antioxidant enzymes, but rather to inflammation and cytokine burst, as shown earlier, that may favour parasite killing and clearance of the infection. These results may help understanding the different clinical profiles described in human malaria hepatopathy.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 77 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 77 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 13 17%
Student > Ph. D. Student 12 16%
Researcher 7 9%
Student > Bachelor 5 6%
Student > Doctoral Student 4 5%
Other 14 18%
Unknown 22 29%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 13 17%
Immunology and Microbiology 13 17%
Pharmacology, Toxicology and Pharmaceutical Science 7 9%
Agricultural and Biological Sciences 7 9%
Medicine and Dentistry 5 6%
Other 6 8%
Unknown 26 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 January 2018.
All research outputs
#17,925,346
of 23,015,156 outputs
Outputs from Malaria Journal
#4,884
of 5,598 outputs
Outputs of similar age
#311,319
of 443,107 outputs
Outputs of similar age from Malaria Journal
#101
of 113 outputs
Altmetric has tracked 23,015,156 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,598 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.8. This one is in the 9th percentile – i.e., 9% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 443,107 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 113 others from the same source and published within six weeks on either side of this one. This one is in the 5th percentile – i.e., 5% of its contemporaries scored the same or lower than it.