↓ Skip to main content

Global sequence diversity of the lactate dehydrogenase gene in Plasmodium falciparum

Overview of attention for article published in Malaria Journal, January 2018
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (53rd percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
6 X users

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
38 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Global sequence diversity of the lactate dehydrogenase gene in Plasmodium falciparum
Published in
Malaria Journal, January 2018
DOI 10.1186/s12936-017-2157-5
Pubmed ID
Authors

Phumin Simpalipan, Sittiporn Pattaradilokrat, Pongchai Harnyuttanakorn

Abstract

Antigen-detecting rapid diagnostic tests (RDTs) have been recommended by the World Health Organization for use in remote areas to improve malaria case management. Lactate dehydrogenase (LDH) of Plasmodium falciparum is one of the main parasite antigens employed by various commercial RDTs. It has been hypothesized that the poor detection of LDH-based RDTs is attributed in part to the sequence diversity of the gene. To test this, the present study aimed to investigate the genetic diversity of the P. falciparum ldh gene in Thailand and to construct the map of LDH sequence diversity in P. falciparum populations worldwide. The ldh gene was sequenced for 50 P. falciparum isolates in Thailand and compared with hundreds of sequences from P. falciparum populations worldwide. Several indices of molecular variation were calculated, including the proportion of polymorphic sites, the average nucleotide diversity index (π), and the haplotype diversity index (H). Tests of positive selection and neutrality tests were performed to determine signatures of natural selection on the gene. Mean genetic distance within and between species of Plasmodium ldh was analysed to infer evolutionary relationships. Nucleotide sequences of P. falciparum ldh could be classified into 9 alleles, encoding 5 isoforms of LDH. L1a was the most common allelic type and was distributed in P. falciparum populations worldwide. Plasmodium falciparum ldh sequences were highly conserved, with haplotype and nucleotide diversity values of 0.203 and 0.0004, respectively. The extremely low genetic diversity was maintained by purifying selection, likely due to functional constraints. Phylogenetic analysis inferred the close genetic relationship of P. falciparum to malaria parasites of great apes, rather than to other human malaria parasites. This study revealed the global genetic variation of the ldh gene in P. falciparum, providing knowledge for improving detection of LDH-based RDTs and supporting the candidacy of LDH as a therapeutic drug target.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 38 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 38 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 18%
Student > Master 7 18%
Student > Bachelor 7 18%
Student > Ph. D. Student 6 16%
Student > Doctoral Student 2 5%
Other 2 5%
Unknown 7 18%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 10 26%
Agricultural and Biological Sciences 6 16%
Nursing and Health Professions 3 8%
Immunology and Microbiology 3 8%
Medicine and Dentistry 2 5%
Other 6 16%
Unknown 8 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 21 November 2018.
All research outputs
#8,135,862
of 24,400,706 outputs
Outputs from Malaria Journal
#2,585
of 5,827 outputs
Outputs of similar age
#158,377
of 451,959 outputs
Outputs of similar age from Malaria Journal
#59
of 113 outputs
Altmetric has tracked 24,400,706 research outputs across all sources so far. This one is in the 44th percentile – i.e., 44% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,827 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.0. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 451,959 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.
We're also able to compare this research output to 113 others from the same source and published within six weeks on either side of this one. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.