↓ Skip to main content

Identification of fluorescence in situ hybridization assay markers for prediction of disease progression in prostate cancer patients on active surveillance

Overview of attention for article published in BMC Cancer, January 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
23 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Identification of fluorescence in situ hybridization assay markers for prediction of disease progression in prostate cancer patients on active surveillance
Published in
BMC Cancer, January 2018
DOI 10.1186/s12885-017-3910-4
Pubmed ID
Authors

Katerina Pestova, Adam J. Koch, Charles P. Quesenberry, Jun Shan, Ying Zhang, Amethyst D. Leimpeter, Beth Blondin, Svetlana Sitailo, Lela Buckingham, Jing Du, Huixin Fei, Stephen K. Van Den Eeden

Abstract

Prostate Cancer (PCa) is the second most prevalent cancer among U.S. males. In recent decades many men with low risk PCa have been over diagnosed and over treated. Given significant co-morbidities associated with definitive treatments, maximizing patient quality of life while recognizing early signs of aggressive disease is essential. There remains a need to better stratify newly diagnosed men according to the risk of disease progression, identifying, with high sensitivity and specificity, candidates for active surveillance versus intervention therapy. The objective of this study was to select fluorescence in situ hybridization (FISH) panels that differentiate non-progressive from progressive disease in patients with low and intermediate risk PCa. We performed a retrospective case-control study to evaluate FISH biomarkers on specimens from PCa patients with clinically localised disease (T1c-T2c) enrolled in Watchful waiting (WW)/Active Surveillance (AS). The patients were classified into cases (progressed to clinical intervention within 10 years), and controls (did not progress in 10 years). Receiver Operating Characteristic (ROC) curve analysis was performed to identify the best 3-5 probe combinations. FISH parameters were then combined with the clinical parameters ─ National Comprehensive Cancer Network (NNCN) risk categories ─ in the logistic regression model. Seven combinations of FISH parameters with the highest sensitivity and specificity for discriminating cases from controls were selected based on the ROC curve analysis. In the logistic regression model, these combinations contributed significantly to the prediction of PCa outcome. The combination of NCCN risk categories and FISH was additive to the clinical parameters or FISH alone in the final model, with odds ratios of 5.1 to 7.0 for the likelihood of the FISH-positive patients in the intended population to develop disease progression, as compared to the FISH-negative group. Combinations of FISH parameters discriminating progressive from non-progressive PCa were selected based on ROC curve analysis. The combination of clinical parameters and FISH outperformed clinical parameters alone, and was complimentary to clinical parameters in the final model, demonstrating potential utility of multi-colour FISH panels as an auxiliary tool for PCa risk stratification. Further studies with larger cohorts are planned to confirm these findings.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 23 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 23 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 17%
Student > Master 3 13%
Other 2 9%
Lecturer 2 9%
Student > Bachelor 2 9%
Other 3 13%
Unknown 7 30%
Readers by discipline Count As %
Medicine and Dentistry 4 17%
Biochemistry, Genetics and Molecular Biology 3 13%
Nursing and Health Professions 2 9%
Computer Science 1 4%
Agricultural and Biological Sciences 1 4%
Other 2 9%
Unknown 10 43%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 January 2018.
All research outputs
#18,832,709
of 23,339,727 outputs
Outputs from BMC Cancer
#5,539
of 8,447 outputs
Outputs of similar age
#332,410
of 443,923 outputs
Outputs of similar age from BMC Cancer
#139
of 199 outputs
Altmetric has tracked 23,339,727 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 8,447 research outputs from this source. They receive a mean Attention Score of 4.4. This one is in the 21st percentile – i.e., 21% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 443,923 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 199 others from the same source and published within six weeks on either side of this one. This one is in the 18th percentile – i.e., 18% of its contemporaries scored the same or lower than it.