↓ Skip to main content

Transcriptomic analyses reveal molecular mechanisms underlying growth heterosis and weakness of rubber tree seedlings

Overview of attention for article published in BMC Plant Biology, January 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Transcriptomic analyses reveal molecular mechanisms underlying growth heterosis and weakness of rubber tree seedlings
Published in
BMC Plant Biology, January 2018
DOI 10.1186/s12870-017-1203-3
Pubmed ID
Authors

Hong Yang, Xuncheng Wang, Yongxuan Wei, Zhi Deng, Hui Liu, Jiangshu Chen, Longjun Dai, Zhihui Xia, Guangming He, Dejun Li

Abstract

Breeding rubber tree seedling with growth heterosis is vital for natural rubber production. It is the prerequisites for effectively utilizing growth heterosis to elucidate its molecular mechanisms, but the molecular mechanisms remain poorly understood in rubber tree. To elucidate seedling growth heterosis, we conducted comparative transcriptomic analyses between the two hybrids and their parents. By identifying and comparing differently expressed genes (DEGs), we found that the hybrids (BT 3410 and WC 11) show significantly differential expression profiles from their parents (PR 107 and RRIM 600). In BT 3410-parent triad, 1092 (49.95%) and 1094 (50.05%) DEGs indicated clear underdominance or overdominance, respectively. Whereas in WC 11-parent triad, most DEGs (78.2%, 721) showed low- or high-parent dominance; 160 (17.35%) exhibited expression patterns that are not statistically distinguishable from additivity, and 8 (0.87%) and 33 (3.58%) DEGs exhibited underdominance and overdominance, respectively. Furthermore, some biological processes are differentially regulated between two hybrids. Interestingly, the pathway in response to stimulus is significantly downregulated and metabolic pathways are more highly regulated in BT 3410. Taken together, the genotypes, transcriptomes and biological pathways (especially, carbohydrate metabolism) are highly divergent between two hybrids, which may be associated with growth heterosis and weakness. Analyzing gene action models in hybrid-parent triads, we propose that overdominance may play important roles on growth heterosis, whereas dominance on hybrid weakness in rubber tree seedlings. These findings bring new insights into our understanding of growth heterosis of rubber tree seedling.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 4 18%
Researcher 4 18%
Student > Ph. D. Student 3 14%
Professor > Associate Professor 2 9%
Lecturer 1 5%
Other 4 18%
Unknown 4 18%
Readers by discipline Count As %
Agricultural and Biological Sciences 8 36%
Environmental Science 2 9%
Engineering 2 9%
Biochemistry, Genetics and Molecular Biology 1 5%
Unspecified 1 5%
Other 2 9%
Unknown 6 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 January 2018.
All research outputs
#20,459,801
of 23,016,919 outputs
Outputs from BMC Plant Biology
#2,548
of 3,283 outputs
Outputs of similar age
#379,338
of 443,116 outputs
Outputs of similar age from BMC Plant Biology
#53
of 64 outputs
Altmetric has tracked 23,016,919 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,283 research outputs from this source. They receive a mean Attention Score of 3.0. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 443,116 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 64 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.