↓ Skip to main content

Emerging roles for microRNA in the regulation of Drosophila circadian clock

Overview of attention for article published in BMC Neuroscience, January 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
40 Dimensions

Readers on

mendeley
44 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Emerging roles for microRNA in the regulation of Drosophila circadian clock
Published in
BMC Neuroscience, January 2018
DOI 10.1186/s12868-018-0401-8
Pubmed ID
Authors

Yongbo Xue, Yong Zhang

Abstract

The circadian clock, which operates within an approximately 24-h period, is closely linked to the survival and fitness of almost all living organisms. The circadian clock is generated through a negative transcription-translation feedback loop. microRNAs (miRNAs) are small non-coding RNAs comprised of approximately 22 nucleotides that post-transcriptionally regulate target mRNA by either inducing mRNA degradation or inhibiting translation. In recent years, miRNAs have been found to play important roles in the regulation of the circadian clock, especially in Drosophila. In this review, we will use fruit flies as an example, and summarize the progress achieved in the study of miRNA-mediated clock regulation. Three main aspects of the circadian clock, namely, the free-running period, locomotion phase, and circadian amplitude, are discussed in detail in the context of how miRNAs are involved in these regulations. In addition, approaches regarding the discovery of circadian-related miRNAs and their targets are also discussed. Research in the last decade suggests that miRNA-mediated post-transcriptional regulation is crucial to the generation and maintenance of a robust circadian clock in animals. In flies, miRNAs are known to modulate circadian rhythmicity and the free-running period, as well as circadian outputs. Further characterization of miRNAs, especially in the circadian input, will be a vital step toward a more comprehensive understanding of the functions underlying miRNA-control of the circadian clock.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 44 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 44 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 27%
Student > Master 8 18%
Researcher 7 16%
Student > Doctoral Student 4 9%
Student > Bachelor 2 5%
Other 3 7%
Unknown 8 18%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 12 27%
Agricultural and Biological Sciences 8 18%
Neuroscience 6 14%
Medicine and Dentistry 2 5%
Immunology and Microbiology 2 5%
Other 6 14%
Unknown 8 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 January 2018.
All research outputs
#17,926,658
of 23,016,919 outputs
Outputs from BMC Neuroscience
#821
of 1,251 outputs
Outputs of similar age
#310,672
of 442,088 outputs
Outputs of similar age from BMC Neuroscience
#6
of 12 outputs
Altmetric has tracked 23,016,919 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,251 research outputs from this source. They receive a mean Attention Score of 4.3. This one is in the 29th percentile – i.e., 29% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 442,088 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 25th percentile – i.e., 25% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 12 others from the same source and published within six weeks on either side of this one. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.