↓ Skip to main content

Breed-dependent microRNA expression in the primary culture of skeletal muscle cells subjected to myogenic differentiation

Overview of attention for article published in BMC Genomics, January 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 tweeters

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
13 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Breed-dependent microRNA expression in the primary culture of skeletal muscle cells subjected to myogenic differentiation
Published in
BMC Genomics, January 2018
DOI 10.1186/s12864-018-4492-5
Pubmed ID
Authors

Tomasz Sadkowski, Anna Ciecierska, Jolanta Oprządek, Edyta Balcerek

Abstract

Skeletal muscle in livestock develops into meat, an important source of protein and other nutrients for human consumption. The muscle is largely composed of a fixed number of multinucleated myofibers determined during late gestation and remains constant postnatally. A population of postnatal muscle stem cells, called satellite cells, gives rise to myoblast cells that can fuse with the existing myofibers, thus increasing their size. This requires a delicate balance of transcription and growth factors and specific microRNA (miRNA) expressed by satellite cells and their supporting cells from the muscle stem cell niche. The role of transcription and growth factors in bovine myogenesis is well-characterized; however, very little is known about the miRNA activity during this process. We have hypothesized that the expression of miRNA can vary between primary cultures of skeletal muscle cells isolated from the semitendinosus muscles of different cattle breeds and subjected to myogenic differentiation. After a 6-day myogenic differentiation of cells isolated from the muscles of the examined cattle breeds, we found statistically significant differences in the number of myotubes between Hereford (HER)/Limousine (LIM) beef breeds and the Holstein-Friesian (HF) dairy breed (p ≤ 0.001). The microarray analysis revealed differences in the expression of 23 miRNA among the aforementioned primary cultures. On the basis of a functional analysis, we assigned 9 miRNA as molecules responsible for differentiation progression (miR-1, -128a, -133a, -133b, -139, -206, -222, -486, and -503). The target gene prediction and functional analysis revealed 59 miRNA-related genes belonging to the muscle organ development process. The number of myotubes and the miRNA expression in the primary cultures of skeletal muscle cells derived from the semitendinosus muscles of the HER/LIM beef cattle breeds and the HF dairy breed vary when cells are subjected to myogenic differentiation. The net effect of the identified miRNA and their target gene action should be considered the result of the breed-dependent activity of satellite cells and muscle stem cell niche cells and their mutual interactions, which putatively can be engaged in the formation of a larger number of myotubes in beef cattle-related cells (HER/LIM) during in vitro myogenesis.

Twitter Demographics

The data shown below were collected from the profiles of 2 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 13 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 13 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 31%
Student > Doctoral Student 2 15%
Professor 2 15%
Other 1 8%
Student > Master 1 8%
Other 1 8%
Unknown 2 15%
Readers by discipline Count As %
Agricultural and Biological Sciences 6 46%
Veterinary Science and Veterinary Medicine 2 15%
Biochemistry, Genetics and Molecular Biology 1 8%
Immunology and Microbiology 1 8%
Medicine and Dentistry 1 8%
Other 1 8%
Unknown 1 8%

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 February 2018.
All research outputs
#7,856,664
of 12,521,852 outputs
Outputs from BMC Genomics
#4,678
of 7,406 outputs
Outputs of similar age
#193,460
of 342,723 outputs
Outputs of similar age from BMC Genomics
#14
of 23 outputs
Altmetric has tracked 12,521,852 research outputs across all sources so far. This one is in the 23rd percentile – i.e., 23% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,406 research outputs from this source. They receive a mean Attention Score of 4.3. This one is in the 28th percentile – i.e., 28% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 342,723 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 23 others from the same source and published within six weeks on either side of this one. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.