↓ Skip to main content

Characteristics of diarrheagenic Escherichia coli among children under 5 years of age with acute diarrhea: a hospital based study

Overview of attention for article published in BMC Infectious Diseases, February 2018
Altmetric Badge

Mentioned by

twitter
2 X users

Citations

dimensions_citation
69 Dimensions

Readers on

mendeley
198 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Characteristics of diarrheagenic Escherichia coli among children under 5 years of age with acute diarrhea: a hospital based study
Published in
BMC Infectious Diseases, February 2018
DOI 10.1186/s12879-017-2936-1
Pubmed ID
Authors

Yu Zhou, Xuhui Zhu, Hongyan Hou, Yanfang Lu, Jing Yu, Lie Mao, Liyan Mao, Ziyong Sun

Abstract

Diarrhea is the leading infectious cause of childhood morbidity and mortality. Among bacterial agents, diarrheagenic Escherichia coli (DEC) is the major causal agent of childhood diarrhea in developing countries, particularly in children under the age of 5 years. Here, we performed a hospital-based prospective study to explore the pathotype distribution, epidemiological characteristics and antibiotic resistance patterns of DEC from < 5-year-old diarrheal children. Between August 2015 and September 2016, 684 stool samples were collected from children (< 5 years old) with acute diarrhea. All samples were cultured and identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and biochemical tests. PCR was used for subtyping, and enteropathogenic E. coli (EPEC) isolates were identified simultaneously with serology. Furthermore, antimicrobial sensitivity tests and sequencing of antibiotic resistance-related genes were conducted. DEC strains were identified in 7.9% of the 684 stool samples. Among them, the most commonly detected pathotype was EPEC (50.0% of DEC), of which 77.8% were classified as atypical EPEC (aEPEC). Age and seasonal distribution revealed that DEC tended to infect younger children and to occur in summer/autumn periods. Multidrug-resistant DEC isolates were 66.7%; resistance rates to ampicillin, co-trimoxazole, cefazolin, cefuroxime, cefotaxime, and ciprofloxacin were ≥ 50%. Among 5 carbapenem-resistant DEC, 60.0% were positive for carbapenemase genes (2 blaNDM-1 and 1 blaKPC-2). Among 30 cephalosporin-resistant DEC, 93.3% were positive for extended-spectrum β-lactamase (ESBL) genes, with blaTEM-1 and blaCTX-M-55 being the most common types. However, no gyrA or gyrB genes were detected in 16 quinolone-resistant isolates. Notably, aEPEC, which has not received much attention before, also exhibited high rates of drug resistance (81.0%, 66.7%, and 14.3% for ampicillin, co-trimoxazole , and carbapenem resistance, respectively). EPEC was the most frequent DEC pathotype in acute diarrheal children, with aEPEC emerging as a dominant diarrheal agent in central China. Most DEC strains were multidrug-resistant, making even ciprofloxacin unsuitable for empiric treatment against DEC infection. Among carbapenem-resistant DEC strains, those harboring blaNDM-1 and blaKPC-2 were the main causal agents. blaTEM-1 and blaCTX-M-55 were the major genetic determinants associated with high levels of cephalosporin resistance.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 198 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 198 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 30 15%
Student > Bachelor 21 11%
Student > Master 20 10%
Student > Ph. D. Student 16 8%
Other 11 6%
Other 24 12%
Unknown 76 38%
Readers by discipline Count As %
Medicine and Dentistry 29 15%
Immunology and Microbiology 26 13%
Agricultural and Biological Sciences 25 13%
Biochemistry, Genetics and Molecular Biology 18 9%
Nursing and Health Professions 6 3%
Other 16 8%
Unknown 78 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 March 2018.
All research outputs
#18,585,544
of 23,020,670 outputs
Outputs from BMC Infectious Diseases
#5,655
of 7,723 outputs
Outputs of similar age
#329,676
of 440,103 outputs
Outputs of similar age from BMC Infectious Diseases
#113
of 162 outputs
Altmetric has tracked 23,020,670 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,723 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.2. This one is in the 15th percentile – i.e., 15% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 440,103 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 14th percentile – i.e., 14% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 162 others from the same source and published within six weeks on either side of this one. This one is in the 20th percentile – i.e., 20% of its contemporaries scored the same or lower than it.