↓ Skip to main content

Telomere elongation protects heart and lung tissue cells from fatal damage in rats exposed to severe hypoxia

Overview of attention for article published in Journal of Physiological Anthropology, February 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
2 X users

Citations

dimensions_citation
13 Dimensions

Readers on

mendeley
16 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Telomere elongation protects heart and lung tissue cells from fatal damage in rats exposed to severe hypoxia
Published in
Journal of Physiological Anthropology, February 2018
DOI 10.1186/s40101-018-0165-y
Pubmed ID
Authors

Yaping Wang, Zhen Zhao, Zhiyong Zhu, Pingying Li, Xiaolin Li, Xiaohong Xue, Jie Duo, Yingcai Ma

Abstract

The effects of acute hypoxia at high altitude on the telomere length of the cells in the heart and lung tissues remain unclear. This study aimed to investigate the change in telomere length of rat heart and lung tissue cells in response to acute exposure to severe hypoxia and its role in hypoxia-induced damage to heart and lung tissues. Forty male Wistar rats (6-week old) were randomized into control group (n = 10) and hypoxia group (n = 30). Rats in control group were kept at an altitude of 1500 m, while rats in hypoxia group were exposed to simulated hypoxia with an altitude of 5000 m in a low-pressure oxygen chamber for 1, 3, and 7 days (n = 10). The left ventricular and right middle lobe tissues of each rat were collected for measurement of telomere length and reactive oxygen species (ROS) content, and the mRNA and protein levels of telomerase reverse transcriptase (TERT), hypoxia-inducible factor1α (HIF-1α), and hypoxia-inducible factor1α (HIF-2α). Increased exposure to hypoxia damaged rat heart and lung tissue cells and increased ROS production and telomere length. The mRNA and protein levels of TERT and HIF-1α were significantly higher in rats exposed to hypoxia and increased with prolonged exposure; mRNA and protein levels of HIF-2α increased only in rats exposed to hypoxia for 7 days. TERT was positively correlated with telomere length and the levels of HIF-1α but not HIF-2α. Acute exposure to severe hypoxia causes damage to heart and lung tissues due to the production of ROS but promotes telomere length and adaptive response by upregulating TERT and HIF-1α, which protect heart and lung tissue cells from fatal damage.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 16 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 3 19%
Researcher 3 19%
Student > Master 2 13%
Professor 1 6%
Other 1 6%
Other 2 13%
Unknown 4 25%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 5 31%
Medicine and Dentistry 3 19%
Nursing and Health Professions 1 6%
Pharmacology, Toxicology and Pharmaceutical Science 1 6%
Agricultural and Biological Sciences 1 6%
Other 1 6%
Unknown 4 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 March 2018.
All research outputs
#15,175,718
of 25,382,440 outputs
Outputs from Journal of Physiological Anthropology
#230
of 451 outputs
Outputs of similar age
#182,726
of 344,026 outputs
Outputs of similar age from Journal of Physiological Anthropology
#2
of 4 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 451 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 22.4. This one is in the 46th percentile – i.e., 46% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 344,026 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 45th percentile – i.e., 45% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 4 others from the same source and published within six weeks on either side of this one. This one has scored higher than 2 of them.