↓ Skip to main content

Synthesis, characterization, molecular docking evaluation, antiplatelet and anticoagulant actions of 1,2,4 triazole hydrazone and sulphonamide novel derivatives

Overview of attention for article published in BMC Chemistry, February 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
32 Dimensions

Readers on

mendeley
27 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Synthesis, characterization, molecular docking evaluation, antiplatelet and anticoagulant actions of 1,2,4 triazole hydrazone and sulphonamide novel derivatives
Published in
BMC Chemistry, February 2018
DOI 10.1186/s13065-018-0378-5
Pubmed ID
Authors

Waseem Khalid, Amir Badshah, Arif-ullah Khan, Humaira Nadeem, Sagheer Ahmed

Abstract

In the present study, a series of new hydrazone and sulfonamide derivatives of 1,2,4-triazole were synthesized. Initially three 4-substituted-5-(2-pyridyl)-1,2,4-triazole-3-thiones ZE-1(a-c) were treated with ethyl chloroacetate to get the corresponding thioesters ZE-2(a-c), which were reacted with hydrazine hydrate to the respective hydrazides ZE-3(a-c). The synthesized hydrazides were condensed with different aldehydes and p-toluene sulfonylchloride to furnish the target hydrazone derivatives ZE-4(a-c) and sulfonamide derivatives ZE-5(a-c) respectively. All the synthesized compounds were characterized by FTIR, 1HNMR, 13CNMR and elemental analysis data. Furthermore, the new hydrazone and sulfonamide derivatives ZE-4(b-c) and ZE-5(a-b) were evaluated for their antiplatelet and anticoagulant activities. ZE-4b, ZE-4c, ZE-5a and ZE-5b inhibited arachidonic acid, adenosine diphosphate and collagen-induced platelets aggregation with IC50 values of 40.1, 785 and 10.01 (ZE-4b), 55.3, 850.4 and 10 (ZE-4c), 121.6, 956.8 and 30.1 (ZE-5a), 99.9, 519 and 29.97 (ZE-5b) respectively. Test compounds increased plasma recalcification time (PRT) and bleeding time (BT) with ZE-4c being found most effective, which at 30, 100, 300 and 1000 µM increased PRT to 84.2 ± 1.88, 142 ± 3.51, 205.6 ± 5.37 and 300.2 ± 3.48 s and prolonged BT to 90.5 ± 3.12, 112.25 ± 2.66, 145.75 ± 1.60 s (P < 0.001 vs. saline group) respectively. In silico docking approach was also applied to screen these compounds for their efficacy against selected drug targets of platelet aggregation and blood coagulation. Thus in silico, in vitro and in vivo investigations of ZE-4b, ZE-4c, ZE-5a and ZE-5b prove their antiplatelet and anticoagulant potential and can be used as lead molecules for further development.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 27 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 27 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 15%
Student > Master 4 15%
Student > Bachelor 2 7%
Researcher 2 7%
Student > Postgraduate 2 7%
Other 6 22%
Unknown 7 26%
Readers by discipline Count As %
Chemistry 7 26%
Medicine and Dentistry 3 11%
Biochemistry, Genetics and Molecular Biology 3 11%
Pharmacology, Toxicology and Pharmaceutical Science 2 7%
Chemical Engineering 1 4%
Other 1 4%
Unknown 10 37%