↓ Skip to main content

Inhibition of autophagy sensitizes cancer cells to Photofrin-based photodynamic therapy

Overview of attention for article published in BMC Cancer, February 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
38 Dimensions

Readers on

mendeley
45 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Inhibition of autophagy sensitizes cancer cells to Photofrin-based photodynamic therapy
Published in
BMC Cancer, February 2018
DOI 10.1186/s12885-018-4126-y
Pubmed ID
Authors

Antoni Domagala, Joanna Stachura, Magdalena Gabrysiak, Angelika Muchowicz, Radoslaw Zagozdzon, Jakub Golab, Malgorzata Firczuk

Abstract

Accumulating evidence suggest that autophagy plays a pivotal role in various anticancer therapies, including photodynamic therapy (PDT), acting as a pro-death or pro-survival mechanism in a context-dependent manner. Therefore, we aimed to determine the role of autophagy in Photofrin-based PDT. In vitro cytotoxic/cytostatic effects of PDT were evaluated with crystal violet cell viability assay. Autophagy induction was analyzed by immunoblotting and immunofluorescence using anti-LC3 antibody. Autophagy was inhibited by shRNA-mediated ATG5 knockdown or CRISPR/Cas9-mediated ATG5 knockout. Apoptosis was assessed by flow cytometry analysis of propidium iodide and anexin V-positive cells as well as by detection of cleaved PARP and caspase 3 proteins using immunoblotting. Protein carbonylation was evaluated by the 2,4-dinitrophenylhydrazine (DNPH) method. Photofrin-PDT leads to robust autophagy induction in two cancer cell lines, Hela and MCF-7. shRNA-mediated knockdown of ATG5 only partially blocks autophagic response and only marginally affects the sensitivity of Hela and MCF-7 cells to PDT. ATG5 knockout in HeLa cell line utilizing CRISPR/Cas9 genome editing results in increased PDT-mediated cytotoxicity, which is accompanied by an enhanced apoptotic response and increased accumulation of carbonylated proteins. Altogether, these observations imply that autophagy contributes to Photofrin-PDT resistance by enabling clearance of carbonylated and other damaged proteins. Therefore, autophagy inhibition may serve as a strategy to improve PDT efficacy.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 45 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 45 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 24%
Student > Bachelor 6 13%
Researcher 4 9%
Student > Master 4 9%
Professor > Associate Professor 3 7%
Other 7 16%
Unknown 10 22%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 11 24%
Medicine and Dentistry 5 11%
Chemistry 4 9%
Pharmacology, Toxicology and Pharmaceutical Science 2 4%
Business, Management and Accounting 2 4%
Other 8 18%
Unknown 13 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 26 February 2018.
All research outputs
#15,493,741
of 23,025,074 outputs
Outputs from BMC Cancer
#4,154
of 8,362 outputs
Outputs of similar age
#211,417
of 331,055 outputs
Outputs of similar age from BMC Cancer
#118
of 223 outputs
Altmetric has tracked 23,025,074 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 8,362 research outputs from this source. They receive a mean Attention Score of 4.3. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 331,055 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 223 others from the same source and published within six weeks on either side of this one. This one is in the 37th percentile – i.e., 37% of its contemporaries scored the same or lower than it.