↓ Skip to main content

Transcription factors Tp73, Cebpd, Pax6, and Spi1 rather than DNA methylation regulate chronic transcriptomics changes after experimental traumatic brain injury

Overview of attention for article published in Acta Neuropathologica Communications, February 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users

Citations

dimensions_citation
27 Dimensions

Readers on

mendeley
56 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Transcription factors Tp73, Cebpd, Pax6, and Spi1 rather than DNA methylation regulate chronic transcriptomics changes after experimental traumatic brain injury
Published in
Acta Neuropathologica Communications, February 2018
DOI 10.1186/s40478-018-0519-z
Pubmed ID
Authors

Anssi Lipponen, Assam El-Osta, Antony Kaspi, Mark Ziemann, Ishant Khurana, Harikrishnan KN, Vicente Navarro-Ferrandis, Noora Puhakka, Jussi Paananen, Asla Pitkänen

Abstract

Traumatic brain injury (TBI) induces a wide variety of cellular and molecular changes that can continue for days to weeks to months, leading to functional impairments. Currently, there are no pharmacotherapies in clinical use that favorably modify the post-TBI outcome, due in part to limited understanding of the mechanisms of TBI-induced pathologies. Our system biology analysis tested the hypothesis that chronic transcriptomics changes induced by TBI are controlled by altered DNA-methylation in gene promoter areas or by transcription factors. We performed genome-wide methyl binding domain (MBD)-sequencing (seq) and RNA-seq in perilesional, thalamic, and hippocampal tissue sampled at 3 months after TBI induced by lateral fluid percussion in adult male Sprague-Dawley rats. We investigated the regulated molecular networks and mechanisms underlying the chronic regulation, particularly DNA methylation and transcription factors. Finally, we identified compounds that modulate the transcriptomics changes and could be repurposed to improve recovery. Unexpectedly, DNA methylation was not a major regulator of chronic post-TBI transcriptomics changes. On the other hand, the transcription factors Cebpd, Pax6, Spi1, and Tp73 were upregulated at 3 months after TBI (False discovery rate < 0.05), which was validated using digital droplet polymerase chain reaction. Transcription regulatory network analysis revealed that these transcription factors regulate apoptosis, inflammation, and microglia, which are well-known contributors to secondary damage after TBI. Library of Integrated Network-based Cellular Signatures (LINCS) analysis identified 118 pharmacotherapies that regulate the expression of Cebpd, Pax6, Spi1, and Tp73. Of these, the antidepressant and/or antipsychotic compounds trimipramine, rolipramine, fluspirilene, and chlorpromazine, as well as the anti-cancer therapies pimasertib, tamoxifen, and vorinostat were strong regulators of the identified transcription factors, suggesting their potential to modulate the regulated transcriptomics networks to improve post-TBI recovery.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 56 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 56 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 12 21%
Student > Ph. D. Student 12 21%
Student > Bachelor 7 13%
Student > Doctoral Student 2 4%
Professor 2 4%
Other 6 11%
Unknown 15 27%
Readers by discipline Count As %
Neuroscience 10 18%
Biochemistry, Genetics and Molecular Biology 7 13%
Agricultural and Biological Sciences 5 9%
Medicine and Dentistry 4 7%
Nursing and Health Professions 3 5%
Other 10 18%
Unknown 17 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 September 2018.
All research outputs
#14,968,843
of 23,025,074 outputs
Outputs from Acta Neuropathologica Communications
#1,125
of 1,394 outputs
Outputs of similar age
#199,876
of 330,058 outputs
Outputs of similar age from Acta Neuropathologica Communications
#21
of 23 outputs
Altmetric has tracked 23,025,074 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,394 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.8. This one is in the 17th percentile – i.e., 17% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 330,058 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 36th percentile – i.e., 36% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 23 others from the same source and published within six weeks on either side of this one. This one is in the 8th percentile – i.e., 8% of its contemporaries scored the same or lower than it.