↓ Skip to main content

Factors driving metabolic diversity in the budding yeast subphylum

Overview of attention for article published in BMC Biology, March 2018
Altmetric Badge

Mentioned by

twitter
46 X users

Citations

dimensions_citation
38 Dimensions

Readers on

mendeley
83 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Factors driving metabolic diversity in the budding yeast subphylum
Published in
BMC Biology, March 2018
DOI 10.1186/s12915-018-0498-3
Pubmed ID
Authors

Dana A. Opulente, Emily J. Rollinson, Cleome Bernick-Roehr, Amanda Beth Hulfachor, Antonis Rokas, Cletus P. Kurtzman, Chris Todd Hittinger

Abstract

Associations between traits are prevalent in nature, occurring across a diverse range of taxa and traits. Individual traits may co-evolve with one other, and these correlations can be driven by factors intrinsic or extrinsic to an organism. However, few studies, especially in microbes, have simultaneously investigated both across a broad taxonomic range. Here we quantify pairwise associations among 48 traits across 784 diverse yeast species of the ancient budding yeast subphylum Saccharomycotina, assessing the effects of phylogenetic history, genetics, and ecology. We find extensive negative (traits that tend to not occur together) and positive (traits that tend to co-occur) pairwise associations among traits, as well as between traits and environments. These associations can largely be explained by the biological properties of the traits, such as overlapping biochemical pathways. The isolation environments of the yeasts explain a minor but significant component of the variance, while phylogeny (the retention of ancestral traits in descendant species) plays an even more limited role. Positive correlations are pervasive among carbon utilization traits and track with chemical structures (e.g., glucosides and sugar alcohols) and metabolic pathways, suggesting a molecular basis for the presence of suites of traits. In several cases, characterized genes from model organisms suggest that enzyme promiscuity and overlapping biochemical pathways are likely mechanisms to explain these macroevolutionary trends. Interestingly, fermentation traits are negatively correlated with the utilization of pentose sugars, which are major components of the plant biomass degraded by fungi and present major bottlenecks to the production of cellulosic biofuels. Finally, we show that mammalian pathogenic and commensal yeasts have a suite of traits that includes growth at high temperature and, surprisingly, the utilization of a narrowed panel of carbon sources. These results demonstrate how both intrinsic physiological factors and extrinsic ecological factors drive the distribution of traits present in diverse organisms across macroevolutionary timescales.

X Demographics

X Demographics

The data shown below were collected from the profiles of 46 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 83 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 83 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 16 19%
Student > Ph. D. Student 15 18%
Student > Master 11 13%
Student > Bachelor 6 7%
Student > Postgraduate 5 6%
Other 13 16%
Unknown 17 20%
Readers by discipline Count As %
Agricultural and Biological Sciences 28 34%
Biochemistry, Genetics and Molecular Biology 24 29%
Medicine and Dentistry 2 2%
Immunology and Microbiology 2 2%
Chemical Engineering 1 1%
Other 3 4%
Unknown 23 28%