↓ Skip to main content

Anti-CD40-induced inflammatory E-cadherin+ dendritic cells enhance T cell responses and antitumour immunity in murine Lewis lung carcinoma

Overview of attention for article published in Journal of Experimental & Clinical Cancer Research, February 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
15 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Anti-CD40-induced inflammatory E-cadherin+ dendritic cells enhance T cell responses and antitumour immunity in murine Lewis lung carcinoma
Published in
Journal of Experimental & Clinical Cancer Research, February 2015
DOI 10.1186/s13046-015-0126-9
Pubmed ID
Authors

Yong Zhang, Xiaoyan Hu, Yue Hu, Kai Teng, Kai Zhang, Yamei Zheng, Xiaohua Hong, Kunwu Yu, Yan Wang, Li Liu

Abstract

BackgroundAgonistic CD40 antibodies have been demonstrated to activate antigen-presenting cells (APCs) and enhance antitumour T cell responses, thereby providing a new therapeutic option in cancer immunotherapy. In agonistic CD40 antibody-mediated inflammatory responses, a novel subset of E-cadherin + dendritic cells (DCs) has been identified, and little is known about the role of these DCs in tumour immunity. This study investigated the effect of anti-CD40-mediated inflammatory E-cadherin + DCs in murine Lewis lung carcinoma (LLC).MethodsThe phenotype and characteristics of anti-CD40-mediated inflammatory E-cadherin + DCs isolated from the anti-CD40 model were assessed in vitro. The antitumour activity of E-cadherin + DCs were evaluated in vivo by promoting the differentiation of effector CD4+ T cells, CEA-specific CD8+ T cells and CD103+ CD8+ T cells and assessing their resistance to tumour challenge, including variations in tumour volume and survival curves.ResultsHere, we demonstrated that anti-CD40-mediated E-cadherin + inflammatory DCs accumulate in the lungs of Rag1 KO mice and were able to stimulate naïve CD4+ T cells to induce Th1 and Th17 cell differentiation and polarisation and to inhibit regulatory T cell and Th2 responses. Importantly, with the adoptive transfer of E-cadherin + DCs into the Lewis lung cancer model, the inflammatory DCs increased the Th1 and Th17 cell responses and reduced the Treg cell and Th2 responses. Interestingly, following the injection of inflammatory E-cadherin + DCs, the CD103+ CD8+ T cell and CEA-specific CD8+ T cell responses increased and exhibited potent antitumour immunity.ConclusionsThese findings indicate that anti-CD40-induced E-cadherin + DCs enhance T cell responses and antitumour activity in non-small cell lung cancer (NSCLC)-bearing mice and may be used to enhance the efficacy of DC-based peptide vaccines against NSCLC.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 15 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 15 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 5 33%
Other 2 13%
Student > Bachelor 2 13%
Student > Ph. D. Student 2 13%
Student > Doctoral Student 1 7%
Other 1 7%
Unknown 2 13%
Readers by discipline Count As %
Medicine and Dentistry 8 53%
Immunology and Microbiology 3 20%
Biochemistry, Genetics and Molecular Biology 2 13%
Unknown 2 13%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 March 2016.
All research outputs
#15,739,529
of 25,374,647 outputs
Outputs from Journal of Experimental & Clinical Cancer Research
#930
of 2,378 outputs
Outputs of similar age
#195,244
of 360,649 outputs
Outputs of similar age from Journal of Experimental & Clinical Cancer Research
#10
of 22 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,378 research outputs from this source. They receive a mean Attention Score of 4.8. This one has gotten more attention than average, scoring higher than 57% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 360,649 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 22 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.