↓ Skip to main content

Physiological and molecular effects of interleukin-18 administration on the mouse kidney

Overview of attention for article published in Journal of Translational Medicine, March 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
22 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Physiological and molecular effects of interleukin-18 administration on the mouse kidney
Published in
Journal of Translational Medicine, March 2018
DOI 10.1186/s12967-018-1426-6
Pubmed ID
Authors

Kyosuke Yamanishi, Keiichiro Mukai, Takuya Hashimoto, Kaoru Ikubo, Keiji Nakasho, Yosif El-Darawish, Wen Li, Daisuke Okuzaki, Yuko Watanabe, Tetsu Hayakawa, Hiroshi Nojima, Hiromichi Yamanishi, Haruki Okamura, Hisato Matsunaga

Abstract

The cytokine interleukin-18 was originally identified as an interferon-γ-inducing proinflammatory factor; however, there is increasing evidence to suggest that it has non-immunological effects on physiological functions. We previously investigated the potential pathophysiological relationship between interleukin-18 and dyslipidemia, non-alcoholic fatty liver disease, and non-alcoholic steatohepatitis, and suggested interleukin-18 as a possible novel treatment for not only these diseases but also for cancer immunotherapy. Before clinical application, the effects of interleukin-18 on the kidney need to be determined. In the current study, we examined the kidney of interleukin-18 knockout (Il18-/-) mice and the effects of interleukin-18 on the kidney following intravenous administration of recombinant interleukin-18. Il18-/- male mice were generated on the C57Bl/6 background and littermate C57Bl/6 Il18+/+ male mice were used as controls. To assess kidney damage, serum creatinine and blood urea nitrogen levels were measured and histopathological analysis was performed. For molecular analysis, microarray and quantitative reverse transcription PCR was performed using mice 6 and 12 weeks old. To evaluate the short- and long-term effects of interleukin-18 on the kidney, recombinant interleukin-18 was administered for 2 and 12 weeks, respectively. Compared with Il18+/+ mice, Il18-/- mice developed kidney failure in their youth-6 weeks of age, but the condition was observed to improve as the mice aged, even though dyslipidemia, arteriosclerosis, and higher insulin resistance occurred. Analyses of potential molecular mechanisms involved in the onset of early kidney failure in Il18-/- mice identified a number of associated genes, such as Itgam, Nov, and Ppard. Intravenous administration of recombinant interleukin-18 over both the short and long term showed no effects on the kidney despite significant improvement in metabolic diseases. Short- and long-term administration of interleukin-18 appeared to have no adverse effects on the kidney in these mice, suggesting that administration may be a safe and novel treatment for metabolic diseases and cancer.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 22 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 22 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 4 18%
Other 2 9%
Professor 2 9%
Student > Ph. D. Student 2 9%
Student > Bachelor 1 5%
Other 5 23%
Unknown 6 27%
Readers by discipline Count As %
Medicine and Dentistry 5 23%
Biochemistry, Genetics and Molecular Biology 4 18%
Immunology and Microbiology 2 9%
Unspecified 1 5%
Business, Management and Accounting 1 5%
Other 0 0%
Unknown 9 41%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 March 2018.
All research outputs
#15,494,712
of 23,026,672 outputs
Outputs from Journal of Translational Medicine
#2,259
of 4,029 outputs
Outputs of similar age
#212,507
of 332,611 outputs
Outputs of similar age from Journal of Translational Medicine
#49
of 96 outputs
Altmetric has tracked 23,026,672 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,029 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.6. This one is in the 31st percentile – i.e., 31% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 332,611 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 27th percentile – i.e., 27% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 96 others from the same source and published within six weeks on either side of this one. This one is in the 21st percentile – i.e., 21% of its contemporaries scored the same or lower than it.