↓ Skip to main content

A modified multilocus sequence typing protocol to genotype Kingella kingae from oropharyngeal swabs without bacterial isolation

Overview of attention for article published in BMC Microbiology, September 2017
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
12 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A modified multilocus sequence typing protocol to genotype Kingella kingae from oropharyngeal swabs without bacterial isolation
Published in
BMC Microbiology, September 2017
DOI 10.1186/s12866-017-1104-5
Pubmed ID
Authors

Nawal El Houmami, Janek Bzdrenga, Jean-Christophe Pons, Philippe Minodier, Guillaume André Durand, Anis Oubraham, Dimitri Ceroni, Pablo Yagupsky, Didier Raoult, Philippe Bidet, Pierre-Edouard Fournier

Abstract

Outbreaks of Kingella kingae infection are an emerging public health concern among daycare attendees carrying epidemic clones in the oropharynx. However, genotyping of such epidemic clones from affected cases is limited by the low performance of current methods to detect K. kingae from blood samples and lack of specimens available from infected sites. We aimed at developing a modified multilocus sequence typing (MLST) method to genotype K. kingae strains from oropharyngeal samples without prior culture. We designed in silico MLST primers specific for K. kingae by aligning whole nucleotide sequences of abcZ, adk, aroE, cpn60, recA, and gdh/zwf genes from closely related species belonging to the Kingella and Neisseria genera. We tested our modified MLST protocol on all Kingella species and N. meningitidis, as well as 11 oropharyngeal samples from young children with sporadic (n = 10) or epidemic (n = 1) K. kingae infection. We detected K. kingae-specific amplicons in the 11 oropharyngeal samples, corresponding to sequence-type 6 (ST-6) in 6 children including the epidemic cases, ST-25 in 2 children, and 3 possible novel STs (ST-67, ST-68, and ST-69). No amplicon was obtained from other Kingella species and N. meningitidis. We herein developed a specific MLST protocol that enables genotyping of K. kingae by MLST directly from oropharyngeal samples. This discriminatory tool, with which we identified the first K. kingae outbreak caused by ST-6 in Europe, may be used in further epidemiological investigations.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 12 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 12 100%

Demographic breakdown

Readers by professional status Count As %
Other 2 17%
Researcher 2 17%
Professor 1 8%
Student > Master 1 8%
Professor > Associate Professor 1 8%
Other 0 0%
Unknown 5 42%
Readers by discipline Count As %
Medicine and Dentistry 3 25%
Biochemistry, Genetics and Molecular Biology 2 17%
Unknown 7 58%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 March 2018.
All research outputs
#20,468,008
of 23,026,672 outputs
Outputs from BMC Microbiology
#2,706
of 3,213 outputs
Outputs of similar age
#278,243
of 318,524 outputs
Outputs of similar age from BMC Microbiology
#33
of 40 outputs
Altmetric has tracked 23,026,672 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,213 research outputs from this source. They receive a mean Attention Score of 4.1. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 318,524 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 40 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.