↓ Skip to main content

Regenerative abilities of mesenchymal stem cells through mitochondrial transfer

Overview of attention for article published in Journal of Biomedical Science, March 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (83rd percentile)
  • High Attention Score compared to outputs of the same age and source (80th percentile)

Mentioned by

news
1 news outlet
twitter
5 X users
facebook
1 Facebook page

Citations

dimensions_citation
234 Dimensions

Readers on

mendeley
257 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Regenerative abilities of mesenchymal stem cells through mitochondrial transfer
Published in
Journal of Biomedical Science, March 2018
DOI 10.1186/s12929-018-0429-1
Pubmed ID
Authors

Swati Paliwal, Rituparna Chaudhuri, Anurag Agrawal, Sujata Mohanty

Abstract

The past decade has witnessed an upsurge in studies demonstrating mitochondrial transfer as one of the emerging mechanisms through which mesenchymal stem cells (MSCs) can regenerate and repair damaged cells or tissues. It has been found to play a critical role in healing several diseases related to brain injury, cardiac myopathies, muscle sepsis, lung disorders and acute respiratory disorders. Several studies have shown that various mechanisms are involved in mitochondrial transfer that includes tunnel tube formation, micro vesicle formation, gap junctions, cell fusion and others modes of transfer. Few studies have investigated the mechanisms that contribute to mitochondrial transfer, primarily comprising of signaling pathways involved in tunnel tube formation that facilitates tunnel tube formation for movement of mitochondria from one cell to another. Various stress signals such as release of damaged mitochondria, mtDNA and mitochondrial products along with elevated reactive oxygen species levels trigger the transfer of mitochondria from MSCs to recipient cells. However, extensive cell signaling pathways that lead to mitochondrial transfer from healthy cells are still under investigation and the changes that contribute to restoration of mitochondrial bioenergetics in recipient cells remain largely elusive. In this review, we have discussed the phenomenon of mitochondrial transfer from MSCs to neighboring stressed cells, and how this aids in cellular repair and regeneration of different organs such as lung, heart, eye, brain and kidney. The potential scope of mitochondrial transfer in providing novel therapeutic strategies for treatment of various pathophysiological conditions has also been discussed.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 257 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 257 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 36 14%
Student > Ph. D. Student 32 12%
Researcher 26 10%
Student > Master 22 9%
Other 14 5%
Other 35 14%
Unknown 92 36%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 57 22%
Medicine and Dentistry 29 11%
Agricultural and Biological Sciences 19 7%
Neuroscience 9 4%
Immunology and Microbiology 9 4%
Other 30 12%
Unknown 104 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 13. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 August 2023.
All research outputs
#2,761,220
of 25,382,440 outputs
Outputs from Journal of Biomedical Science
#102
of 1,101 outputs
Outputs of similar age
#56,488
of 343,676 outputs
Outputs of similar age from Journal of Biomedical Science
#3
of 15 outputs
Altmetric has tracked 25,382,440 research outputs across all sources so far. Compared to these this one has done well and is in the 89th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,101 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 11.1. This one has done particularly well, scoring higher than 90% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 343,676 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 83% of its contemporaries.
We're also able to compare this research output to 15 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 80% of its contemporaries.