↓ Skip to main content

Variance explained by whole genome sequence variants in coding and regulatory genome annotations for six dairy traits

Overview of attention for article published in BMC Genomics, April 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
20 Dimensions

Readers on

mendeley
39 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Variance explained by whole genome sequence variants in coding and regulatory genome annotations for six dairy traits
Published in
BMC Genomics, April 2018
DOI 10.1186/s12864-018-4617-x
Pubmed ID
Authors

Lambros T. Koufariotis, Yi-Ping Phoebe Chen, Paul Stothard, Ben J. Hayes

Abstract

There are an exceedingly large number of sequence variants discovered through whole genome sequencing in most populations, including cattle. Deciphering which of these affect complex traits is a major challenge. In this study we hypothesize that variants in some functional classes, such as splice site regions, coding regions, DNA methylated regions and long noncoding RNA will explain more variance in complex traits than others. Two variance component approaches were used to test this hypothesis - the first determines if variants in a functional class capture a greater proportion of the variance, than expected by chance, the second uses the proportion of variance explained when variants in all annotations are fitted simultaneously. Our data set consisted of 28.3 million imputed whole genome sequence variants in 16,581 dairy cattle with records for 6 complex trait phenotypes, including production and fertility. We found that sequence variants in splice site regions and synonymous classes captured the greatest proportion of the variance, explaining up to 50% of the variance across all traits. We also found sequence variants in target sites for DNA methylation (genomic regions that are found be highly methylated in bovine placentas), captured a significant proportion of the variance. Per sequence variant, splice site variants explain the highest proportion of variance in this study. The proportion of variance captured by the missense predicted deleterious (from SIFT) and missense tolerated classes was relatively small. The results demonstrate using functional annotations to filter whole genome sequence variants into more informative subsets could be useful for prioritization of the variants that are more likely to be associated with complex traits. In addition to variants found in splice sites and protein coding genes regulatory variants and those found in DNA methylated regions, explained considerable variation in milk production and fertility traits. In our analysis synonymous variants captured a significant proportion of the variance, which raises the possible explanation that synonymous mutations might have some effects, or more likely that these variants are miss-annotated, or alternatively the results reflect imperfect imputation of the actual causative variants.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 39 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 39 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 23%
Student > Ph. D. Student 7 18%
Student > Master 4 10%
Student > Bachelor 2 5%
Professor 2 5%
Other 3 8%
Unknown 12 31%
Readers by discipline Count As %
Agricultural and Biological Sciences 16 41%
Biochemistry, Genetics and Molecular Biology 3 8%
Unspecified 1 3%
Environmental Science 1 3%
Arts and Humanities 1 3%
Other 4 10%
Unknown 13 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 April 2018.
All research outputs
#14,387,654
of 23,041,514 outputs
Outputs from BMC Genomics
#5,728
of 10,697 outputs
Outputs of similar age
#187,124
of 329,678 outputs
Outputs of similar age from BMC Genomics
#107
of 211 outputs
Altmetric has tracked 23,041,514 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 10,697 research outputs from this source. They receive a mean Attention Score of 4.7. This one is in the 42nd percentile – i.e., 42% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,678 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 211 others from the same source and published within six weeks on either side of this one. This one is in the 43rd percentile – i.e., 43% of its contemporaries scored the same or lower than it.