↓ Skip to main content

Bat lung epithelial cells show greater host species-specific innate resistance than MDCK cells to human and avian influenza viruses

Overview of attention for article published in Virology Journal, April 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (81st percentile)
  • High Attention Score compared to outputs of the same age and source (90th percentile)

Mentioned by

blogs
1 blog
twitter
3 X users

Citations

dimensions_citation
6 Dimensions

Readers on

mendeley
25 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Bat lung epithelial cells show greater host species-specific innate resistance than MDCK cells to human and avian influenza viruses
Published in
Virology Journal, April 2018
DOI 10.1186/s12985-018-0979-6
Pubmed ID
Authors

Tessa Slater, Isabella Eckerle, Kin-Chow Chang

Abstract

With the recent discovery of novel H17N10 and H18N11 influenza viral RNA in bats and report on high frequency of avian H9 seroconversion in a species of free ranging bats, an important issue to address is the extent bats are susceptible to conventional avian and human influenza A viruses. To this end, three bat species (Eidolon helvum, Carollia perspicillata and Tadarida brasiliensis) of lung epithelial cells were separately infected with two avian and two human influenza viruses to determine their relative host innate immune resistance to infection. All three species of bat cells were more resistant than positive control Madin-Darby canine kidney (MDCK) cells to all four influenza viruses. TB1-Lu cells lacked sialic acid α2,6-Gal receptors and were most resistant among the three bat species. Interestingly, avian viruses were relatively more replication permissive in all three bat species of cells than with the use of human viruses which suggest that bats could potentially play a role in the ecology of avian influenza viruses. Chemical inhibition of the JAK-STAT pathway in bat cells had no effect on virus production suggesting that type I interferon signalling is not a major factor in resisting influenza virus infection. Although all three species of bat cells are relatively more resistant to influenza virus infection than control MDCK cells, they are more permissive to avian than human viruses which suggest that bats could have a contributory role in the ecology of avian influenza viruses.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 25 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 25 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 8 32%
Student > Bachelor 3 12%
Student > Ph. D. Student 2 8%
Student > Master 2 8%
Unspecified 1 4%
Other 1 4%
Unknown 8 32%
Readers by discipline Count As %
Agricultural and Biological Sciences 5 20%
Biochemistry, Genetics and Molecular Biology 4 16%
Veterinary Science and Veterinary Medicine 3 12%
Unspecified 1 4%
Computer Science 1 4%
Other 1 4%
Unknown 10 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 November 2018.
All research outputs
#2,904,640
of 23,041,514 outputs
Outputs from Virology Journal
#270
of 3,063 outputs
Outputs of similar age
#62,467
of 329,244 outputs
Outputs of similar age from Virology Journal
#5
of 54 outputs
Altmetric has tracked 23,041,514 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,063 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 25.7. This one has done particularly well, scoring higher than 91% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,244 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 81% of its contemporaries.
We're also able to compare this research output to 54 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 90% of its contemporaries.