↓ Skip to main content

A high performance prediction of HPV genotypes by Chaos game representation and singular value decomposition

Overview of attention for article published in BMC Bioinformatics, March 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
3 X users
facebook
1 Facebook page

Citations

dimensions_citation
19 Dimensions

Readers on

mendeley
36 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A high performance prediction of HPV genotypes by Chaos game representation and singular value decomposition
Published in
BMC Bioinformatics, March 2015
DOI 10.1186/s12859-015-0493-4
Pubmed ID
Authors

Watcharaporn Tanchotsrinon, Chidchanok Lursinsap, Yong Poovorawan

Abstract

Human Papillomavirus (HPV) genotyping is an important approach to fight cervical cancer due to the relevant information regarding risk stratification for diagnosis and the better understanding of the relationship of HPV with carcinogenesis. This paper proposed two new feature extraction techniques, i.e. ChaosCentroid and ChaosFrequency, for predicting HPV genotypes associated with the cancer. The additional diversified 12 HPV genotypes, i.e. types 6, 11, 16, 18, 31, 33, 35, 45, 52, 53, 58, and 66, were studied in this paper. In our proposed techniques, a partitioned Chaos Game Representation (CGR) is deployed to represent HPV genomes. ChaosCentroid captures the structure of sequences in terms of centroid of each sub-region with Euclidean distances among the centroids and the center of CGR as the relations of all sub-regions. ChaosFrequency extracts the statistical distribution of mono-, di-, or higher order nucleotides along HPV genomes and forms a matrix of frequency of dots in each sub-region. For performance evaluation, four different types of classifiers, i.e. Multi-layer Perceptron, Radial Basis Function, K-Nearest Neighbor, and Fuzzy K-Nearest Neighbor Techniques were deployed, and our best results from each classifier were compared with the NCBI genotyping tool. The experimental results obtained by four different classifiers are in the same trend. ChaosCentroid gave considerably higher performance than ChaosFrequency when the input length is one but it was moderately lower than ChaosFrequency when the input length is two. Both proposed techniques yielded almost or exactly the best performance when the input length is more than three. But there is no significance between our proposed techniques and the comparative alignment method. Our proposed alignment-free and scale-independent method can successfully transform HPV genomes with 7,000 - 10,000 base pairs into features of 1 - 11 dimensions. This signifies that our ChaosCentroid and ChaosFrequency can be served as the effective feature extraction techniques for predicting the HPV genotypes.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 36 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
China 1 3%
Unknown 35 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 7 19%
Student > Bachelor 5 14%
Student > Master 4 11%
Professor 2 6%
Researcher 2 6%
Other 5 14%
Unknown 11 31%
Readers by discipline Count As %
Computer Science 5 14%
Medicine and Dentistry 4 11%
Biochemistry, Genetics and Molecular Biology 4 11%
Agricultural and Biological Sciences 3 8%
Engineering 3 8%
Other 6 17%
Unknown 11 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 06 March 2015.
All research outputs
#14,804,483
of 22,793,427 outputs
Outputs from BMC Bioinformatics
#5,039
of 7,280 outputs
Outputs of similar age
#144,333
of 257,881 outputs
Outputs of similar age from BMC Bioinformatics
#91
of 138 outputs
Altmetric has tracked 22,793,427 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 7,280 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one is in the 26th percentile – i.e., 26% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 257,881 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 138 others from the same source and published within six weeks on either side of this one. This one is in the 29th percentile – i.e., 29% of its contemporaries scored the same or lower than it.