↓ Skip to main content

Use of clustering analysis in randomized controlled trials in orthopaedic surgery

Overview of attention for article published in BMC Medical Research Methodology, March 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
31 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Use of clustering analysis in randomized controlled trials in orthopaedic surgery
Published in
BMC Medical Research Methodology, March 2015
DOI 10.1186/s12874-015-0006-1
Pubmed ID
Authors

Hanna Oltean, Joel J Gagnier

Abstract

The effects of clustering in randomized controlled trials (RCTs) and the resulting potential violation of assumptions of independence are now well recognized. When patients in a single study are treated by several therapists, there is good reason to suspect that the variation in outcome will be smaller for patients treated in the same group than for patients treated in different groups. This potential correlation of outcomes results in a loss of independence of observations. The purpose of this study is to examine the current use of clustering analysis in RCTs published in the top five journals of orthopaedic surgery. RCTs published from 2006 to 2010 in the top five journals of orthopaedic surgery, as determined by 5-year impact factor, that included multiple therapists and/or centers were included. Identified articles were assessed for accounting for the effects of clustering of therapists and/or centers in randomization or analysis. Logistic regression used both univariate and multivariate models, with use of clustering analysis as the outcome. Multivariate models were constructed using stepwise deletion. An alpha level of 0.10 was considered significant. A total of 271 articles classified as RCTs were identified from the five journals included in the study. Thirty-two articles were excluded due to inclusion of nonhuman subjects. Of the remaining 239 articles, 186 were found to include multiple centers and/or therapists. The prevalence of use of clustering analysis was 21.5%. Fewer than half of the studies reported inclusion of a statistician, epidemiologist or clinical trials methodologist on the team. In multivariate modeling, adjusting for clustering was associated with a 6.7 times higher odds of inclusion of any type of specialist on the team (P = 0.08). Likewise, trials that accounted for clustering had 3.3 times the odds of including an epidemiologist/clinical trials methodologist than those that did not account for clustering (P = 0.04). Including specialists on a study team, especially an epidemiologist or clinical trials methodologist, appears to be important in the decision to account for clustering in RCT reporting. The use of clustering analysis remains an important piece of unbiased reporting, and accounting for clustering in RCTs should be a standard reporting practice.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 31 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 29%
Student > Ph. D. Student 2 6%
Lecturer 1 3%
Student > Doctoral Student 1 3%
Other 1 3%
Other 3 10%
Unknown 14 45%
Readers by discipline Count As %
Medicine and Dentistry 8 26%
Computer Science 2 6%
Mathematics 2 6%
Immunology and Microbiology 1 3%
Social Sciences 1 3%
Other 3 10%
Unknown 14 45%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 March 2015.
All research outputs
#15,326,126
of 22,794,367 outputs
Outputs from BMC Medical Research Methodology
#1,506
of 2,012 outputs
Outputs of similar age
#153,671
of 258,838 outputs
Outputs of similar age from BMC Medical Research Methodology
#17
of 26 outputs
Altmetric has tracked 22,794,367 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,012 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.2. This one is in the 16th percentile – i.e., 16% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 258,838 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 26 others from the same source and published within six weeks on either side of this one. This one is in the 34th percentile – i.e., 34% of its contemporaries scored the same or lower than it.