↓ Skip to main content

Brain transcriptome profiles in mouse model simulating features of post-traumatic stress disorder

Overview of attention for article published in Molecular Brain, February 2015
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (52nd percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
44 Dimensions

Readers on

mendeley
150 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Brain transcriptome profiles in mouse model simulating features of post-traumatic stress disorder
Published in
Molecular Brain, February 2015
DOI 10.1186/s13041-015-0104-3
Pubmed ID
Authors

Seid Muhie, Aarti Gautam, James Meyerhoff, Nabarun Chakraborty, Rasha Hammamieh, Marti Jett

Abstract

Social-stress mouse model, based on the resident-intruder paradigm was used to simulate features of human post-traumatic stress disorder (PTSD). The model involved exposure of an intruder (subject) mouse to a resident aggressor mouse followed by exposure to trauma reminders with rest periods. C57BL/6 mice exposed to SJL aggressor mice exhibited behaviors suggested as PTSD-in-mouse phenotypes: intermittent freezing, reduced locomotion, avoidance of the aggressor-associated cue and apparent startled jumping. Brain tissues (amygdala, hippocampus, medial prefrontal cortex, septal region, corpus striatum and ventral striatum) from subject (aggressor exposed: Agg-E) and control C57BL/6 mice were collected at one, 10 and 42 days post aggressor exposure sessions. Transcripts in these brain regions were assayed using Agilent's mouse genome-wide arrays. Pathways and biological processes associated with differentially regulated genes were mainly those thought to be involved in fear-related behavioral responses and neuronal signaling. Expression-based assessments of activation patterns showed increased activations of pathways related to anxiety disorders (hyperactivity and fear responses), impaired cognition, mood disorders, circadian rhythm disruption, and impaired territorial and aggressive behaviors. In amygdala, activations of these pathways were more pronounced at earlier time-points, with some attenuation after longer rest periods. In hippocampus and medial prefrontal cortex, activation patterns were observed at later time points. Signaling pathways associated with PTSD-comorbid conditions, such as diabetes, metabolic disorder, inflammation and cardiac infarction, were also significantly enriched. In contrast, signaling processes related to neurogenesis and synaptic plasticity were inhibited. Our data suggests activations of behavioral responses associated with anxiety disorders as well as inhibition of neuronal signaling pathways important for neurogenesis, cognition and extinction of fear memory. These pathways along with comorbid-related signaling pathways indicate the pervasive and multisystem effects of aggressor exposure in mice, potentially mirroring the pathologic conditions of PTSD patients.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 150 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 1%
Italy 2 1%
Malaysia 1 <1%
Canada 1 <1%
Austria 1 <1%
Unknown 143 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 30 20%
Student > Master 19 13%
Researcher 18 12%
Student > Bachelor 15 10%
Student > Doctoral Student 9 6%
Other 23 15%
Unknown 36 24%
Readers by discipline Count As %
Neuroscience 26 17%
Agricultural and Biological Sciences 18 12%
Psychology 16 11%
Medicine and Dentistry 16 11%
Biochemistry, Genetics and Molecular Biology 12 8%
Other 14 9%
Unknown 48 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 June 2015.
All research outputs
#13,196,442
of 22,794,367 outputs
Outputs from Molecular Brain
#445
of 1,106 outputs
Outputs of similar age
#119,488
of 255,870 outputs
Outputs of similar age from Molecular Brain
#12
of 23 outputs
Altmetric has tracked 22,794,367 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,106 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 7.1. This one has gotten more attention than average, scoring higher than 58% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 255,870 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.
We're also able to compare this research output to 23 others from the same source and published within six weeks on either side of this one. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.