↓ Skip to main content

Evaluation of public cancer datasets and signatures identifies TP53 mutant signatures with robust prognostic and predictive value

Overview of attention for article published in BMC Cancer, March 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (52nd percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
33 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Evaluation of public cancer datasets and signatures identifies TP53 mutant signatures with robust prognostic and predictive value
Published in
BMC Cancer, March 2015
DOI 10.1186/s12885-015-1102-7
Pubmed ID
Authors

Brian David Lehmann, Yan Ding, Daniel Joseph Viox, Ming Jiang, Yi Zheng, Wang Liao, Xi Chen, Wei Xiang, Yajun Yi

Abstract

Systematic analysis of cancer gene-expression patterns using high-throughput transcriptional profiling technologies has led to the discovery and publication of hundreds of gene-expression signatures. However, few public signature values have been cross-validated over multiple studies for the prediction of cancer prognosis and chemosensitivity in the neoadjuvant setting. To analyze the prognostic and predictive values of publicly available signatures, we have implemented a systematic method for high-throughput and efficient validation of a large number of datasets and gene-expression signatures. Using this method, we performed a meta-analysis including 351 publicly available signatures, 37,000 random signatures, and 31 breast cancer datasets. Survival analyses and pathologic responses were used to assess prediction of prognosis, chemoresponsiveness, and chemo-drug sensitivity. Among 31 breast cancer datasets and 351 public signatures, we identified 22 validation datasets, two robust prognostic signatures (BRmet50 and PMID18271932Sig33) in breast cancer and one signature (PMID20813035Sig137) specific for prognosis prediction in patients with ER-negative tumors. The 22 validation datasets demonstrated enhanced ability to distinguish cancer gene profiles from random gene profiles. Both prognostic signatures are composed of genes associated with TP53 mutations and were able to stratify the good and poor prognostic groups successfully in 82%and 68% of the 22 validation datasets, respectively. We then assessed the abilities of the two signatures to predict treatment responses of breast cancer patients treated with commonly used chemotherapeutic regimens. Both BRmet50 and PMID18271932Sig33 retrospectively identified those patients with an insensitive response to neoadjuvant chemotherapy (mean positive predictive values 85%-88%). Among those patients predicted to be treatment sensitive, distant relapse-free survival (DRFS) was improved (negative predictive values 87%-88%). BRmet50 was further shown to prospectively predict taxane-anthracycline sensitivity in patients with HER2-negative (HER2-) breast cancer. We have developed and applied a high-throughput screening method for public cancer signature validation. Using this method, we identified appropriate datasets for cross-validation and two robust signatures that differentiate TP53 mutation status and have prognostic and predictive value for breast cancer patients.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 33 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Ukraine 1 3%
Unknown 32 97%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 27%
Researcher 6 18%
Student > Master 4 12%
Student > Bachelor 3 9%
Lecturer 2 6%
Other 5 15%
Unknown 4 12%
Readers by discipline Count As %
Medicine and Dentistry 12 36%
Biochemistry, Genetics and Molecular Biology 8 24%
Nursing and Health Professions 3 9%
Computer Science 2 6%
Agricultural and Biological Sciences 1 3%
Other 2 6%
Unknown 5 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 January 2016.
All research outputs
#14,806,069
of 22,796,179 outputs
Outputs from BMC Cancer
#3,665
of 8,295 outputs
Outputs of similar age
#148,282
of 263,459 outputs
Outputs of similar age from BMC Cancer
#107
of 248 outputs
Altmetric has tracked 22,796,179 research outputs across all sources so far. This one is in the 32nd percentile – i.e., 32% of other outputs scored the same or lower than it.
So far Altmetric has tracked 8,295 research outputs from this source. They receive a mean Attention Score of 4.3. This one has gotten more attention than average, scoring higher than 50% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 263,459 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 248 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.