↓ Skip to main content

FH535 increases the radiosensitivity and reverses epithelial-to-mesenchymal transition of radioresistant esophageal cancer cell line KYSE-150R

Overview of attention for article published in Journal of Translational Medicine, March 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
54 Dimensions

Readers on

mendeley
21 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
FH535 increases the radiosensitivity and reverses epithelial-to-mesenchymal transition of radioresistant esophageal cancer cell line KYSE-150R
Published in
Journal of Translational Medicine, March 2015
DOI 10.1186/s12967-015-0464-6
Pubmed ID
Authors

Huafang Su, Xiance Jin, Xuebang Zhang, Lihao Zhao, Baochai Lin, Lili Li, Zhenghua Fei, Lanxiao Shen, Ya Fang, Huanle Pan, Congying Xie

Abstract

Acquired radioresistance has significantly compromised the efficacy of radiotherapy for esophageal cancer. The purpose of this study is to investigate the roles of epithelial-mesenchymal transition (EMT) and the Wnt/β-catenin signaling pathway in the acquirement of radioresistance during the radiation treatment of esophageal cancer. We previously established a radioresistant cell line (KYSE-150R) from the KYSE-150 cell line (a human cell line model for esophageal squamous cell carcinoma) with a gradient cumulative irradiation dose. In this study, the expression of EMT phenotypes and the Wnt/β-catenin signaling pathway proteins were examined by real-time PCR, western blot and immunofluorescence in the KYSE-150R cells. The KYSE-150R cells were then treated with a β-Catenin/Tcf inhibitor FH535. The expressions of nuclear and cytoplasmic β-catenin and EMT markers in KYSE-150R cells were assessed at both mRNA and protein level after FH535 treatment. The radiosensitization effect of FH535 on KYSE-150R was evaluated by CCK8 analysis and a colony forming assay. DNA repair capacities was detected by the neutral comet assays. KYSE-150R cell line displayed obvious radiation resistance and had a stable genetic ability. EMT phenotype was presented in the KYSE-150R cells with decreased E-cadherin and increased snail and twist expressions. The up-regulated expressions of Wnt/β-catenin signaling pathway proteins (Wnt1, FZD1-4, GSK3β, CTNNB1 and Cyclin D1), the increased phosphorylation of GSK3β, and the decreased phosphorylation of β-catenin were observed in KYSE-150R cells compared with KYSE-150 cells, implicating the activation of the Wnt pathway in KYSE-150R cells. The expression of nuclear β-catenin and nuclear translocation of β-catenin from the cytoplasm was decreased after FH535 treatment. FH535 also reversed EMT phenotypes by increasing E-cadherin expression. The cell proliferation rates of KYSE-150R were dose-dependent and the radiation survival fraction was significantly decreased upon FH535 treatment. Neutral comet assays indicated that FH535 impairs DNA double stranded break repair in KYSE-150R cells. Acquisition of radioresistance and EMT in esophageal cancer cells is associated with the activation of the Wnt/β-catenin pathway. EMT phenotypes can be reduced and the radiosensitivity of esophageal cancer cells can be enhanced by inhibiting the Wnt/β-catenin pathway with FH535 treatment.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 21 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 21 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 7 33%
Student > Ph. D. Student 6 29%
Researcher 2 10%
Student > Bachelor 1 5%
Student > Postgraduate 1 5%
Other 0 0%
Unknown 4 19%
Readers by discipline Count As %
Medicine and Dentistry 6 29%
Biochemistry, Genetics and Molecular Biology 5 24%
Pharmacology, Toxicology and Pharmaceutical Science 2 10%
Agricultural and Biological Sciences 2 10%
Psychology 1 5%
Other 0 0%
Unknown 5 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 31 March 2015.
All research outputs
#14,220,809
of 22,797,621 outputs
Outputs from Journal of Translational Medicine
#1,780
of 3,988 outputs
Outputs of similar age
#139,765
of 264,714 outputs
Outputs of similar age from Journal of Translational Medicine
#41
of 85 outputs
Altmetric has tracked 22,797,621 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,988 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.5. This one has gotten more attention than average, scoring higher than 50% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 264,714 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 44th percentile – i.e., 44% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 85 others from the same source and published within six weeks on either side of this one. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.