Title |
ENCAPP: elastic-net-based prognosis prediction and biomarker discovery for human cancers
|
---|---|
Published in |
BMC Genomics, April 2015
|
DOI | 10.1186/s12864-015-1465-9 |
Pubmed ID | |
Authors |
Jishnu Das, Kaitlyn M Gayvert, Florentina Bunea, Marten H Wegkamp, Haiyuan Yu |
Abstract |
With the explosion of genomic data over the last decade, there has been a tremendous amount of effort to understand the molecular basis of cancer using informatics approaches. However, this has proven to be extremely difficult primarily because of the varied etiology and vast genetic heterogeneity of different cancers and even within the same cancer. One particularly challenging problem is to predict prognostic outcome of the disease for different patients. Here, we present ENCAPP, an elastic-net-based approach that combines the reference human protein interactome network with gene expression data to accurately predict prognosis for different human cancers. Our method identifies functional modules that are differentially expressed between patients with good and bad prognosis and uses these to fit a regression model that can be used to predict prognosis for breast, colon, rectal, and ovarian cancers. Using this model, ENCAPP can also identify prognostic biomarkers with a high degree of confidence, which can be used to generate downstream mechanistic and therapeutic insights. ENCAPP is a robust method that can accurately predict prognostic outcome and identify biomarkers for different human cancers. |
X Demographics
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Geographical breakdown
Country | Count | As % |
---|---|---|
United States | 1 | 33% |
Unknown | 2 | 67% |
Demographic breakdown
Type | Count | As % |
---|---|---|
Scientists | 2 | 67% |
Members of the public | 1 | 33% |
Mendeley readers
Geographical breakdown
Country | Count | As % |
---|---|---|
United States | 1 | 2% |
India | 1 | 2% |
Belgium | 1 | 2% |
Unknown | 56 | 95% |
Demographic breakdown
Readers by professional status | Count | As % |
---|---|---|
Student > Ph. D. Student | 19 | 32% |
Researcher | 12 | 20% |
Student > Bachelor | 7 | 12% |
Student > Master | 6 | 10% |
Student > Doctoral Student | 2 | 3% |
Other | 7 | 12% |
Unknown | 6 | 10% |
Readers by discipline | Count | As % |
---|---|---|
Agricultural and Biological Sciences | 12 | 20% |
Computer Science | 10 | 17% |
Biochemistry, Genetics and Molecular Biology | 10 | 17% |
Medicine and Dentistry | 8 | 14% |
Engineering | 4 | 7% |
Other | 8 | 14% |
Unknown | 7 | 12% |