↓ Skip to main content

From wheat straw to bioethanol: integrative analysis of a separate hydrolysis and co-fermentation process with implemented enzyme production

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, March 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (86th percentile)
  • High Attention Score compared to outputs of the same age and source (85th percentile)

Mentioned by

twitter
4 X users
patent
3 patents

Citations

dimensions_citation
39 Dimensions

Readers on

mendeley
125 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
From wheat straw to bioethanol: integrative analysis of a separate hydrolysis and co-fermentation process with implemented enzyme production
Published in
Biotechnology for Biofuels and Bioproducts, March 2015
DOI 10.1186/s13068-015-0232-0
Pubmed ID
Authors

Vera Novy, Karin Longus, Bernd Nidetzky

Abstract

Lignocellulosic ethanol has a high potential as renewable energy source. In recent years, much research effort has been spent to optimize parameters involved in the production process. Despite that, there is still a lack of comprehensive studies on process integration. Single parameters and process configurations are, however, heavily interrelated and can affect the overall process efficiency in a multitude of ways. Here, we present an integrative approach for bioethanol production from wheat straw at a representative laboratory scale using a separate hydrolysis and co-fermentation (SHCF) process. The process does not rely on commercial (hemi-) cellulases but includes enzyme production through Hypocrea jecorina (formerly Trichoderma reesei) on the pre-treated feedstock as key unit operation. Hydrolysis reactions are run with high solid loadings of 15% dry mass pre-treated wheat straw (DM WS), and hydrolyzates are utilized without detoxification for mixed glucose-xylose fermentation with the genetically and evolutionary engineered Saccharomyces cerevisiae strain IBB10B05. Process configurations of unit operations in the benchtop SHCF were varied and evaluated with respect to the overall process ethanol yield (Y Ethanol-Process). The highest Y Ethanol-Process of 71.2 g ethanol per kg raw material was reached when fungal fermentations were run as batch, and the hydrolysis reaction was done with an enzyme loading of 30 filter paper units (FPU)/gDM WS. 1.7 ± 0.1 FPU/mL were produced, glucose and xylose were released with a conversion efficiency of 67% and 95%, respectively, and strain IBB10B05 showed an ethanol yield of 0.4 g/gGlc + Xyl in 15% hydrolyzate fermentations. Based on the detailed process analysis, it was further possible to identify the enzyme yield, the glucose conversion efficiency, and the mass losses between the unit operations as key process parameters, exhibiting a major influence on Y Ethanol-Process. Y Ethanol-Process is a measure for the efficiency of the lignocellulose-to-bioethanol process. Based on mass balance analysis, the correlations between single process parameters and Y Ethanol-Process were elucidated. The optimized laboratory scale SHCF process showed efficiencies similar to pilot scale plants. The herein presented process analysis can serve as effective and simple tool to identify key process parameters, bottlenecks, and future optimization targets.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 125 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Iran, Islamic Republic of 1 <1%
Indonesia 1 <1%
United States 1 <1%
Unknown 122 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 27 22%
Student > Master 24 19%
Researcher 14 11%
Student > Bachelor 9 7%
Student > Doctoral Student 4 3%
Other 15 12%
Unknown 32 26%
Readers by discipline Count As %
Agricultural and Biological Sciences 37 30%
Chemical Engineering 13 10%
Biochemistry, Genetics and Molecular Biology 11 9%
Engineering 9 7%
Environmental Science 4 3%
Other 15 12%
Unknown 36 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 12. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 November 2020.
All research outputs
#2,982,808
of 25,371,288 outputs
Outputs from Biotechnology for Biofuels and Bioproducts
#136
of 1,578 outputs
Outputs of similar age
#38,559
of 291,316 outputs
Outputs of similar age from Biotechnology for Biofuels and Bioproducts
#6
of 42 outputs
Altmetric has tracked 25,371,288 research outputs across all sources so far. Compared to these this one has done well and is in the 88th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,578 research outputs from this source. They receive a mean Attention Score of 4.9. This one has done particularly well, scoring higher than 91% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 291,316 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 86% of its contemporaries.
We're also able to compare this research output to 42 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 85% of its contemporaries.