↓ Skip to main content

Uniconazole-induced starch accumulation in the bioenergy crop duckweed (Landoltia punctata) II: transcriptome alterations of pathways involved in carbohydrate metabolism and endogenous hormone…

Overview of attention for article published in Biotechnology for Biofuels and Bioproducts, April 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age

Mentioned by

twitter
1 X user

Citations

dimensions_citation
58 Dimensions

Readers on

mendeley
52 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Uniconazole-induced starch accumulation in the bioenergy crop duckweed (Landoltia punctata) II: transcriptome alterations of pathways involved in carbohydrate metabolism and endogenous hormone crosstalk
Published in
Biotechnology for Biofuels and Bioproducts, April 2015
DOI 10.1186/s13068-015-0245-8
Pubmed ID
Authors

Yang Liu, Yang Fang, Mengjun Huang, Yanling Jin, Jiaolong Sun, Xiang Tao, Guohua Zhang, Kaize He, Yun Zhao, Hai Zhao

Abstract

Landoltia punctata is a widely distributed duckweed species with great potential to accumulate enormous amounts of starch for bioethanol production. We found that L. punctata can accumulate starch rapidly accompanied by alterations in endogenous hormone levels after uniconazole application, but the relationship between endogenous hormones and starch accumulation is still unclear. After spraying fronds with 800 mg/L uniconazole, L. punctata can accumulate starch quickly, with a dry weight starch content of up to 48% after 240 h of growth compared to 15.7% in the control group. Electron microscopy showed that the starch granule content was elevated after uniconazole application. The activities of key enzymes involved in starch synthesis were also significantly increased. Moreover, the expression of regulatory elements of the cytokinin (CK), abscisic acid (ABA) and gibberellin (GA) signaling pathways that are involved in chlorophyll and starch metabolism also changed correspondingly. Importantly, the expression levels of key enzymes involved in starch biosynthesis were up-regulated, while transcript-encoding enzymes involved in starch degradation and other carbohydrate metabolic branches were down-regulated. The increase of endogenous ABA and CK levels positively promoted the activity of ADP-glucose pyrophosphorylase (AGPase) and chlorophyll content, while the decrease in endogenous GA levels inactivated α-amylase. Thus, the alterations of endogenous hormone levels resulted in starch accumulation due to regulation of the expression of genes involved in the starch metabolism pathway.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 52 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Indonesia 1 2%
Unknown 51 98%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 8 15%
Student > Ph. D. Student 5 10%
Researcher 5 10%
Student > Master 5 10%
Student > Doctoral Student 2 4%
Other 8 15%
Unknown 19 37%
Readers by discipline Count As %
Agricultural and Biological Sciences 12 23%
Environmental Science 8 15%
Biochemistry, Genetics and Molecular Biology 5 10%
Engineering 2 4%
Veterinary Science and Veterinary Medicine 1 2%
Other 3 6%
Unknown 21 40%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 April 2015.
All research outputs
#17,285,036
of 25,373,627 outputs
Outputs from Biotechnology for Biofuels and Bioproducts
#997
of 1,578 outputs
Outputs of similar age
#169,772
of 279,199 outputs
Outputs of similar age from Biotechnology for Biofuels and Bioproducts
#25
of 35 outputs
Altmetric has tracked 25,373,627 research outputs across all sources so far. This one is in the 21st percentile – i.e., 21% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,578 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 20th percentile – i.e., 20% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 279,199 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 30th percentile – i.e., 30% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 35 others from the same source and published within six weeks on either side of this one. This one is in the 20th percentile – i.e., 20% of its contemporaries scored the same or lower than it.