↓ Skip to main content

An analysis of the changes in soluble hydrogenase and global gene expression in Cupriavidus necator (Ralstonia eutropha) H16 grown in heterotrophic diauxic batch culture

Overview of attention for article published in Microbial Cell Factories, March 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (80th percentile)
  • High Attention Score compared to outputs of the same age and source (87th percentile)

Mentioned by

twitter
2 X users
patent
2 patents
wikipedia
3 Wikipedia pages

Readers on

mendeley
90 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
An analysis of the changes in soluble hydrogenase and global gene expression in Cupriavidus necator (Ralstonia eutropha) H16 grown in heterotrophic diauxic batch culture
Published in
Microbial Cell Factories, March 2015
DOI 10.1186/s12934-015-0226-4
Pubmed ID
Authors

Bat-Erdene Jugder, Zhiliang Chen, Darren Tan Tek Ping, Helene Lebhar, Jeffrey Welch, Christopher P Marquis

Abstract

Soluble hydrogenases (SH) are enzymes that catalyse the oxidation of molecular hydrogen. The SH enzyme from Cupriavidus necator H16 is relatively oxygen tolerant and makes an attractive target for potential application in biochemical hydrogen fuel cells. Expression of the enzyme can be mediated by derepression of the hox promoter system under heterotrophic conditions. However, the overall impact of hox derepression, from a transcriptomic perspective, has never been previously reported. Derepression of hydrogenase gene expression upon fructose depletion was confirmed in replicate experiments. Using qRT-PCR, hoxF was 4.6-fold up-regulated, hypF2 was up-regulated in the cells grown 2.2-fold and the regulatory gene hoxA was up-regulated by a mean factor of 4.5. A full transcriptomic evaluation revealed a substantial shift in the global pattern of gene expression. In addition to up-regulation of genes associated with hydrogenase expression, significant changes were observed in genes associated with energy transduction, amino acid metabolism, transcription and translation (and regulation thereof), genes associated with cell stress, lipid and cell wall biogenesis and other functions, including cell motility. We report the first full transcriptome analysis of C. necator H16 grown heterotrophically on fructose and glycerol in diauxic batch culture, which permits expression of soluble hydrogenase under heterotrophic conditions. The data presented deepens our understanding of the changes in global gene expression patterns that occur during the switch to growth on glycerol and suggests that energy deficit is a key driver for induction of hydrogenase expression in this organism.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 90 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
China 1 1%
Unknown 89 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 26 29%
Researcher 17 19%
Student > Bachelor 7 8%
Unspecified 4 4%
Student > Postgraduate 4 4%
Other 8 9%
Unknown 24 27%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 20 22%
Agricultural and Biological Sciences 14 16%
Environmental Science 7 8%
Unspecified 4 4%
Immunology and Microbiology 3 3%
Other 15 17%
Unknown 27 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 October 2019.
All research outputs
#4,124,906
of 22,799,071 outputs
Outputs from Microbial Cell Factories
#216
of 1,598 outputs
Outputs of similar age
#51,946
of 263,388 outputs
Outputs of similar age from Microbial Cell Factories
#5
of 41 outputs
Altmetric has tracked 22,799,071 research outputs across all sources so far. Compared to these this one has done well and is in the 81st percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,598 research outputs from this source. They receive a mean Attention Score of 4.4. This one has done well, scoring higher than 86% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 263,388 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 80% of its contemporaries.
We're also able to compare this research output to 41 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 87% of its contemporaries.