↓ Skip to main content

Role of IL-16 in CD4+ T cell-mediated regulation of relapsing multiple sclerosis

Overview of attention for article published in Journal of Neuroinflammation, April 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
3 X users

Citations

dimensions_citation
31 Dimensions

Readers on

mendeley
61 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Role of IL-16 in CD4+ T cell-mediated regulation of relapsing multiple sclerosis
Published in
Journal of Neuroinflammation, April 2015
DOI 10.1186/s12974-015-0292-x
Pubmed ID
Authors

Dusanka S Skundric, William W Cruikshank, Jelena Drulovic

Abstract

In an important article published in Nature Medicine, Liu and colleagues described a novel CD4(+) FoxA1(+) regulatory T (Treg) cell population as distinct regulators of relapsing-remitting multiple sclerosis (RRMS) and experimental autoimmune encephalomyelitis (EAE). CD4(+) FoxA1(+) Treg cells appear as key regulators of responsiveness to therapy with interferon beta (IFN-β) in RRMS patients. Data indicate that CD4(+)FoxA1(+) FOXP3(-) Treg cells develop within the central nervous system (CNS), and a potential of cerebellar granule neurons (CGN) in generation of CD4(+)FoxA1(+)PD-L1(hi)FOXP3(-) Treg cells from encephalitogenic CD4(+) T cells.A CD4 co-receptor specific ligand, IL-16, governs trafficking and biological properties of CD4(+) T cells irrespective of their activation state. Functions of IL-16, relevant to Treg cells, include expansion of CD4(+)CD25(+) T cells in long-term cultures with IL-2, de novo induction of FOXP-3 and migration of FOXP-3(+) T cells. IL-16 is highly conserved across species including human and mouse. CGN and neurons in hippocampus contain neuronal-IL-16 (NIL-16), splice variant of immune IL-16, and express CD4 molecule. In a CD4-dependent manner, IL-16 supports cultured CGN survival.Concomitant studies of RRMS lesions and corresponding MOG35-55-induced relapsing EAE in (B6 × SJL)F1 (H-2(b/s)) mice discovered similar roles of IL-16 in regulation of relapsing disease. In RRMS and EAE relapse, peak levels of IL-16 and active caspase-3 correlated with CD4(+) T cell infiltration and levels of T-bet, Stat-1(Tyr(701)), and phosphorylated neurofilaments of axonal cytoskeleton [NF (M + H) P], suggesting a role of locally produced IL-16 in regulation of CD4(+) Th1 inflammation and axonal damage, respectively. IL-16 was abundantly present in CD4(+) T cells, followed by CD20(+) B, CD8(+) T, CD83(+) dendritic cells, and Mac-1(+) microglia. Apart from lesions, bioactive IL-16 was located in normal-appearing white matter (NAWM) and normal-appearing grey matter (NAGM) in RRMS brain and spinal cord.A cytokine IL-16 emerges as an important regulator of relapsing MS and EAE. Better understanding of immune cell-neuron interactions mediated by IL-16 will foster development of more specific CD4(+) T cell subset-targeted therapies to prevent or ameliorate progression of neuroinflammation and axonal and neuronal damage. Translational studies necessitate corresponding EAE models.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 61 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Chile 1 2%
Germany 1 2%
Unknown 59 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 12 20%
Student > Bachelor 8 13%
Other 7 11%
Student > Ph. D. Student 6 10%
Student > Postgraduate 6 10%
Other 13 21%
Unknown 9 15%
Readers by discipline Count As %
Medicine and Dentistry 16 26%
Neuroscience 10 16%
Agricultural and Biological Sciences 10 16%
Biochemistry, Genetics and Molecular Biology 7 11%
Immunology and Microbiology 3 5%
Other 6 10%
Unknown 9 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 August 2016.
All research outputs
#13,941,015
of 22,800,560 outputs
Outputs from Journal of Neuroinflammation
#1,504
of 2,629 outputs
Outputs of similar age
#134,779
of 265,536 outputs
Outputs of similar age from Journal of Neuroinflammation
#36
of 54 outputs
Altmetric has tracked 22,800,560 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,629 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 40th percentile – i.e., 40% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 265,536 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 47th percentile – i.e., 47% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 54 others from the same source and published within six weeks on either side of this one. This one is in the 33rd percentile – i.e., 33% of its contemporaries scored the same or lower than it.